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1. Introduction 
 

Previous studies show that the Noise Propagation 
Matrix Method (NPMM) can be used to compute the 
dominance ratio of the system [1]. The NPMM is 
essentially the same as the Coarse Mesh Projection 
Method (CMPM) proposed even earlier [2-8], both of 
which use the noise propagation matrix (NPM) based on 
a coarse mesh to determine the dominance ratio. The 
eigenvalues and eigenfunctions of the NPM are the 
eigenvalue ratios and the eigenfunctions of the system. 

Recently the Modified Power Method (MPM) has 
been studied to calculate the higher mode eigensolutions 
using the transfer matrix (TM), whose eigenvalues and 
eigenvectors are the eigenvalues and eigenfunctions of 
the system [9, 10]. 

In NPMM, only the fundamental fission sources are 
utilized, and the higher mode information is from the 
statistical noise of the fundamental fission sources. 
However, in MPM, the higher modes are explicitly 
simulated at the same time as the fundamental fission 
source. Due to the similarity of the NPM and TM, it is 
natural to extend the NPMM to get higher mode 
eigensolutions by simulating higher mode fission 
sources explicitly. 

 
2. Methods and Results 

 
In this section the basic theory of the NPMM will be 

presented, followed by the extension and numerical tests.  
 

2.1 The Noise Propagation Matrix 
 
Both the CMPM and the NPMM use a NPM to 

compute the dominance ratio, which is calculated from 
two source correlation matrices. The fission source is 
discretized on a small number of large meshes. Let s(m) 
denote the fission source vector at the end of cycle m, 
and assume that m is sufficiently large that the source 
vector can be considered a stationary random variable. 
Following Nease and Ueki, the fission source vector can 
be decomposed as: 

 
 ( ) ( )

0 ,m mN N= +s s e   (1) 
 

where N is the number of histories per cycle, s0 is the 
normalized fundamental fission source vector, and e(m) 
is a normalized stochastic noise vector representing the 
derivation of the cycle-m fission source from its 

expected value. Denoting the ensemble-averaging 
process by L , there is: 
 

 ( )
0 .m N= ºs s s   (2) 

 
From Eqs. (1) and (2), there is: 
 

 ( ) 0.m =e   (3) 

 
Nease and Ueki show that e(m) is propagated from cycle 
to cycle according to: 
 

 ( ) ( ) ( )1 1
0 ,m m m+ += +e A e ε   (4) 

 
where A0 is the NPM and ε(m+1) is a vector representing 
the noise during the neutron transport process at cycle-
(m+1). The latter has the property: 
 

 ( )1 0.m+ =ε   (5) 

 
Although the NPM is defined based on the noises, the 

practical implementations of the CMPM and NPMM 
have used an alternative way utilizing the correlation 
matrices based on the fission sources. 

Based on the Eqs. (1) and (4), and using the property 
0 0 0=A s , it can be shown that the equation governing 

the propagation of the fission source from cycle to cycle 
is: 

 
 ( ) ( ) ( )1 1

0 ,m m m+ += +s A s η   (6) 
 

where ( ) ( )
0

m mN N= +η s ε . Multiplying Eq. (6) with 
s(m)T from right and ensemble-averaging results in: 
 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
0 ,m m T m m T m m T+ += +s s A s s η s   (7) 

 
where  
 

 
( ) ( ) ( )( ) ( )( )1 1 1

0 0 .
Tm m T m mN N N N+ + += + +η s s ε s e  (8) 

 
The noise introduced in one cycle is uncorrelated to the 
accumulated noise terms from all previous cycles, i.e. : 
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 ( ) ( )1 0.m m T+ =ε e   (9) 

 
Using Eqs. (2), (3), (5) and (9), Eq. (8) is: 
 

 ( ) ( )1 .m m T T+ =η s ss   (10) 

 
Define the source correlation matrices as: 
 

 ( ) ( ) ( ) ( )1
0 1' ,  ' .m m T m m T+º ºL s s L s s   (11) 

 
From Eqs. (7), (10) and (11), the NPM can be obtained: 
 

 ( ) 1
0 1 0' ' .T -é ù= -ë ûA L ss L   (12) 

 
The largest-modulus eigenvalue of the NPM is the 
dominance ratio of the system. 
 
2.2 Extension of the NPM to higher modes 

 
Similar to Eq. (1), the stationary fundamental fission 

source at the beginning of cycle-m can be described as: 
 
 ( ) ( )

0 0 00 ,m mN N= +v v e   (13) 
 

while the corresponding fundamental fission produced 
neutron distribution at the end of cycle-m is: 
 

 ( ) ( )
0 0 0 0 01 ,m mk N k N= +w v e   (14) 

 
where ( )

0
mv  and ( )

0
mw  are the fundamental fission 

neutron distributions at the beginning and end of cycle-
m, v0 is the normalized fundamental fission source, N is 
the number of neutron histories per cycle, k0 is the 
fundamental mode eigenvalue, ( )

00
me  and ( )

01
me  are the 

normalized stochastic noise vectors that represent the 
deviation of fundamental mode fission neutron 
distributions to their expected values at the beginning 
and end of cycle-m, respectively.  

Similar to Eq. (4), the noise propagation equation can 
be written as: 

 
 ( ) ( ) ( )

0 01 00 0 0 ,m m mk k= +e Pe ε   (15) 
 

where P can be treated as the NPM but with some 
modification, compared with Eq. (4), and it is 
essentially the same as TM, as will be revealed in the 
following discussions. ( )

0
mε  is the stochastic noise 

introduced to the fundamental mode neutron distribution 
at cycle-m. According to Eqs. (14) and (15) and using 
the property 0 0 0k=Pv v , it can be derived that: 
 

 ( ) ( ) ( )
0 0 0 0 .m m mk N= +w Pv ε   (16) 

 
Similar to Eq. (16), if the i-th mode neutron sources 

can be simulated, the i-th mode fission neutron 
distributions at the beginning and end of cycle-m can be 
related with the following equation: 

 
 ( ) ( ) ( ) ,m m m

i i i ik N= +w Pv ε   (17) 
 

where ( )m
iv  and ( )m

iw  are the i-th mode fission neutron 
distributions at the beginning and end of cycle-m, ki is 
the i-th mode eigenvalue and ( )m

iε  is the stochastic noise 
introduced to i-th mode neutron source during cycle-m. 

According to Eqs. (16) and (17), the relation between 
the first N eigenmode fission sources at the beginning 
and end of cycle-m can be expressed as: 

 
 ( ) ( ) ( ) ,m m m= +W PV U   (18) 
 

where the columns of V(m) and W(m) represent the first N 
eigenmode neutron sources at the beginning and end of 
cycle-m, respectively, the columns of U(m) represents the 
stochastic noises introduced to the first N eigenmode 
fission sources during cycle-m, ( ) ( ) ( ), ,m m m

M N´ÎW V U R , 

M M´ÎP R , and M is number of meshes that used to 
discretize the neutron sources. Using the property 

( ) 0m =U , it can be derived from Eq. (18) that: 

 
 ( ) ( ) .m m=W P V   (19) 

 
Since the stochastic noises introduced during cycle-m 

are independent of the neutron sources, from Eqs. (9) 
and (13) it can be derived that: 

 
 ( ) ( ) .m m T =U V 0   (20) 

 
Multiplying Eq. (18) with V(m)T from right and 

ensemble-averaging results in: 
 
 ( ) ( ) ( ) ( ) .m m T m m T=W V P V V   (21) 

 
The TM (modified NPM) can then be calculated as: 
 

 ( ) ( ) ( ) ( ) 1
.m m T m m T -

=P W V V V   (22) 

 
It should be noticed that the eigenvalues of the TM 

are the eigenvalues of the system, and the eigenvectors 
of the TM are the fission sources represented with the M 
coarse meshes, as already well explained in the MPM. 

 
2.3 The implementation of the extended NPMM 
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The implementation of the extended NPMM is very 

similar to that of the MPM, except for the calculation 
method of the TM. The correlation matrices are 
accumulated: 

 

 � ( ) ( ) ( )

0

0
1

,
mm i i T

i m= +

º åL V V   (23) 

 

 � ( ) ( ) ( )

0

1
1

,
mm i i T

i m= +

º åL W V   (24) 

 
where m0 is the number of cycles skipped before 
accumulation of the correlation matrices. The cycle-m 
estimate of the TM is then computed as: 
 

 ( ) � ( ) � ( )( ) 1

1 0 .
m mm

-

=P L L   (25) 

 
The first N eigenvectors of the TM are used to calculate 
the combination coefficient matrix that is then used to 
update the neutron sources, as already described in the 
MPM. 

 
2.4 The 2D square neutron transport problem 

 
The multi-group 2D homogeneous square neutron 

transport problem was modeled to demonstrate the 
extended NPMM (ENPMM). The 7-group cross 
sections are from the C5G7 benchmark for the ‘mox8’ 
material. The side length of the 2D square is 400 cm, 
with black boundary on four sides. The 5x5 uniform 
coarse meshes were used to discretize the fission 
sources and obtain the correlation matrices, while 8 or 
16 eigenmodes were simulated at the same time. The 
Monte Carlo simulations were done with 400 inactive 
cycles, 400 active cycles and 500,000 histories per cycle. 

 

 
Fig. 1. The Shannon Entropy results of different methods. 
 
The Shannon Entropy results of different methods are 

shown in Fig. 1. It can be seen that the results are 

consistent for all three simulations, and generally with 
more modes, the convergence of ENPMM is quicker.  

 

 
Fig. 2. Eigenvalues of the TM that is calculated at evry cycle. 
 

 
Fig. 3. Eigenvalues tallied at every cycle as the ratio of the 
total absolute weight values to the number of histories per 
cycle. 
 

 
Fig. 4. The eigenvalue spectrum. 

 
The eigenvalue results of ENPMM_16 are shown in 

Figs. 2-4. It can be seen that at the beginning of the 
simulation there is very big fluctuations, which is 
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thought to be caused by the less fission source pairs 
being used to calculate the correlation matrices. 
 

 
Fig. 5. The fissin source distrubutions of the first 16 
eigenmodes. 

 
The first 16 eigenmode fission source distribution 

obtained with ENPMM_16 are shown in Fig. 5, with 
100x100 uniform meshes to discretize the fission 
sources. 

 
3. Conclusions 

 
The NPMM has been extended to calculate the higher 

mode solutions with the Monte Carlo simulation. 
Previously the NPMM was used to calculate the 
dominance ratio based on the stochastic noise contained 
in the fundamental fission source and large number of 
active cycles is required to get accurate results. The 
NPMM was combined with the MPM with the higher 
mode fission sources simulated explicitly in this study, 
and various higher mode solutions can be accurately 
calculated with less number of active cycles. 
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