Development of key technologies for a high-current superconducting heavy-ion linear accelerator

김종원 기초과학연구원

춘계원자력학회, 2017년 5월 18일

Layout of accelerator systems of RISP

- IF (In-flight) separation
- ISOL (ISotope On Line) separation
- ISOL+IF

Aerial view of the RAON site in Sindong area

발표 요약

- High-current heavy ion accelerator facilities based on superconducting linac have been developed for the next generation nuclear science study in different places.
- Rare isotope science project (RISP) aims to provide 400-kW stable beams (²³⁸U. 200 MeV/u) as well as rare isotope beams produced by using both IF separation and ISOL methods.
- To realize high-current heavy ion accelerator, there are some key technologies needed to be developed and efforts made for RISP are described.

RI beam production systems of **RISP**: **ISOL** and **In-flight**

Staged construction

- SCL3 \rightarrow SCL2 \rightarrow SCL1 according to the use of beams
- Beam power ramp-up: < 100 kW (2021) \rightarrow 400 kW (in a few years after 2021)

Key technologies for high-intensity HI SC-linac system

- **1. Design** of superconducting linac
- **2. SC-cavity** especially for low- β beam
- **3. SC-ECR ion source** to produce highly-charged and high-current heavy ions
- 4. **RFQ** for high-current heavy ion beams
- 5. Charge stripper for heavy ion beams
- 6. EBIS

1. Design: Injector+SCL3+SCL2 (current design)

Length: SCL3+180° bending: 122 m, SCL2 181 m

1. Design: Tunnel design for SCL3

1. Design: Design study of SCL3 with ANL group (Feb. 2016)

Pre-conceptual design on18.5 MeV/u pre-stripper linac for the RISP/IBS.

February 26, 2016

Argonne National Laboratory Physics Division

> B. Mustapha P. N. Ostroumov, PI

Parameter	QWR1	QWR2
f (MHz)	81.25	81.25
β_{opt}	0.05	0.109
L _{eff} (cm)	18.5	40.2
Aperture (mm)	40	40
Height (cm)	103	115

A long cryomodule of ATLAS

Comparison of SC Linac parameters.

Parameters	RISP baseline	ANL proposal
Number of QWR (or QWR1)	22	15
Number of HWR (or QWR2)	102	49
Number of cryomodule	54	9
Total length	100 m	53.3 m

* E_p assumed for RISP: 35 MeV/m, ANL : 40 MeV/m

Capacity of cryogenic plant for ANL design: 2.5 kW at 4.4 K (4.2 kW for RISP baseline)

1. Design: Two-beam acceleration with SCL3

2. SC-cavity: Prototyping of SCL3 components

Item	1 st Prototype	2 nd Prototyping	Completion time or status
ECR Ion Source	RISP		Under test
RFQ	Vitzrotech(1)		Under test
QWR (β=0.047)	Vitzrotech(1)	<mark>Ongoing</mark> RI Instru. (2) Vitzrotech(2)	2016.4Q
QWR Coupler	<mark>Ongoing</mark> Toshiba(2) Mitubish(2)		2016.4Q
QWR Cryomodule	Vitzrotech(1)	Vitzrotech(1)	2016.4Q
HWR (β=0.12)	Vitzrotech(1)	<mark>Ongoing</mark> RI instru. (2) Vitzrotech(4)	2017.1Q
HWR Coupler	IHEP(2)		2017.1Q
HWR Cryomodule	Vitzrotech(1) SFA(1)	Ongoing	2017.1Q

*Parenthesis: number of the same element

2. SC-cavity: QWR development of RISP

From presentation of H.C. Jung, KPS spring meeting April, 2017

2. SC-cavity: HWR development of RISP

From presentation of H.C. Jung, KPS spring meeting April, 2017

2. SC-cavity: SRF test facility at Munji campus of KAIST

2. SC-cavity: comparison with FRIB cavities

Parameters of RISP cavities

Parameters	Unit	QWR	HWR	SSR1	SSR2
β_g	-	0.047	0.12	0.30	0.51
Resonant frequency	MHz	81.25	162.5	325	325
No of cavities	-	22	98	69	138
Aperture diameter	$\mathbf{m}\mathbf{m}$	40	40	50	50
QR_s	Ohm	21	42	98	112
R/Q	Ohm	470	300	230	300
Vacc	MV	1.0	1.5	2.2	4.2
E_{peak}	MV/m	35	35	35	35
B_{peak}	mT	57	55	58	64
Operating temp	Κ	4.5	2	2	2

Castita Tama	OWR	OWR	HWR	HWR
Cavity Type	C.	C-		
β	0.041	0.085	0.285	0.53
f [MHz]	80.5	80.5	322	322
V _a [MV]	0.810	1.80	2.09	3.70
E _{ace} [MV/m]	5.29	5.68	7.89	7.51
E_p/E_{acc}	5.82	5.89	4.22	3.53
B _p /E _{ace} [mT/(MV/m)]	10.3	12.1	7.55	8.41
R/Q [Ω]	402	455	224	230
Γ [Ω]	15.3	22.3	77.9	107
Aperture [m]	0.036	0.036	0.040	0.040
$L_{eff} \equiv \beta \lambda [m]$	0.153	0.317	0.265	0.493
Lorenz detuning [Hz/(MV/m) ²]	< 4	< 4	< 4	< 4
Specific Qo @VT	1.4x10 ⁹	2.0x10 ⁹	5.5x10 ⁹	9.2x10 ⁹

2. SC-cavity: comparison with FRIB cavities

2. SC-cavity: 1st assembled QWR cryomodule test ('17, April)

Short Cryomodule

RISP

Installed QWR module in Test Bunker

Long Cryomodule

FRIB 0.85QWR cryomodule design

FRIB 0.53HWR cryomodule design

3. SC-ECR: beam test of 28 GHz SC-ECR, RISP

O⁷⁺ beam extraction at 10 keV/u, 10uA (Oct. 2016)

Frequency (GHz)	28
RF Power (kW)	10 + 2
Plasma Chamber ID (mm)	147
$V_{ecr}(kV) = V_{ext}(kV) + V_{acc}(kV)$	70 = ~ 30 + ~ 50
Number of Solenoid Coils	4
B _{inj} (T)	~3.5
B _{ext} (T)	2
B _{min} (T)	0.4 ~ 0.8

3. SC-ECR : comparison with SC-ECR of SECRAL

R&D for HIAF SECRAL High Intensity Beams

The world best performance ECRIS

近代物理研究所

Institute of Modern Physics

-12-

From presentation of Hongwei Zhao, Jan. 2017, AFAD

3. SC-ECR : comparison with VENUS at LBL

Design characteristics of the VENUS magnet structure

ID of plasma chamber	15 cm
Mirror field on axis	4.0 T (at injection),
	3.0 T (at extraction)
Mirror-mirror spacing	50 cm
Central field	0.2 -1.0 T (variable)
Max. radial field, plasma wall	2.4 T
Min. field, plasma wall	2.0 T

Ion	Charge state	Intensity (eµA)	Method
¹²⁴ Xe	30+	211	Gas
¹²⁴ Xe	42+	1	Gas
²⁰⁹ Bi	31+	300	HiT oven
²⁰⁹ Bi	50+	5.3	HiT oven
¹⁶ O	6+	3000	Gas
¹⁶ O	7+	925	Gas
⁴⁰ Ca	11+	400	LoT oven

TABLE II. Recent VENUS results.

J. Benitez et al., RSI 83 (2012)

Ion	Charge State	Intensity (eµA)
4He	1+	20 emA
4He	2+	11 emA
16O	6+	3 emA
40Ar	11+	860 eµA
40Ar	16+	270 еµА
40Ca	11+	400 eµA
40Ca	12+	400 eµA
124Xe	35+	37.5 eµA
209Bi	31+	300 еµА
209Bi	50+	5.3 eµA
209Bi	51+	3.3 eµA
238U	33+	450 eµA
238U	50+	13 eµA
238U	56+	0.79 eµA

From 88inch cyclotron Website (May, 2017)

4. RFQ: O⁷⁺ beam first accelerated by RFQ on Nov. 30, 2016

Parameter	Value
f	81.25 MHz
E _{in}	10 keV/u
E _{out}	0.507 MeV/u
E _{out}	0.0125 .cm. mrad ~26 keV/11-degree
Transmission	~98%
P _{loss}	94 kW
Duty factor	100%

Repetition rate : 1Hz

- RF pulse width: 250 µsec
- Beam pulse width: 110 µsec

4. RFQ: comparison with other RFQ's

Commissioning of 162.5-MHz CW RFQ

The RFQ was designed and built by collaboration with LBNL

- June 6th-2014, the first beam, energy is 2.15 MeV
- June 30th-2014, 10 mA, CW beam, 4.5 hours, beam power 21.6 kW
- July 18th-19th-2014, tested and peer reviewed by CAS
- July 24th-2014, 18 mA, pulse beam, 37.8 kW, transmission 87%
- Total operation time is ~1000 hours including CW@10mA around 10 hours

From presentation of Hongwei Zhao, Jan. 2017, AFAD

80.5 MHz, 5-segment, 4-vane RFQ tuned (2016 Linac Conf., J. Wei)

SPIRAL2 at GANIL

- Proton ~5 mA CW (Dec. 2015) trans. ~100 %
- A/Q=2 (⁴He²⁺) ~1 mA CW (June 2016) trans. > 99 %
- RFQ always operated in CW

From presentation in July. HB2016

5. Charge Stripper: Carbon, Liquid Li, He

The energy loss of the heavy ions in material is much higher than for protons. It is a challenge to dissipate the power.

Solid carbon foils can be used only with low mass ions at low intensities Two options are available for high intensity: flowing liquids and gases -For liquids, lithium is the best option. (The average charge state after stripping is higher than for heavier mass gases like N2 or Ar) -For gases, helium is the best candidate.

F. Marti, From presentation at HB2016

5. Charge Stripper: 액체 리튬 stripper개발

EM pump 개발 (2016, 6월), 대전 문평동 실험실

Whole system

5. Charge Stripper: Liquid Li at FRIB

- Film thickness: ~12 μm
 - stability: $\pm 5\%$ for $\phi 1$ mm spot
- Speed of liquid Li: ~ 50 m/s) to remove heat
- High pressure: ~15 bars
- Nozzle diameter: $\phi 0.5 \text{ mm}$

F. Marti, From presentation at HB2016

5. Charge Stripper: He gas stripper at RIKEN

6. EBIS: EBIS-CB and ISOL system

6. EBIS: EBIS development

EBIS (Electron beam ion source) is a key component for the multi-user capability
Major components are ready to be assembled in 2017.

6. EBIS: experimental results

Charge breeding performance for the Phoenix ECR sources tested at ISOLDE and LPSC, the TRIAC source, the TRIUMF source, the ANL source, and the recently commissioned SPES charge breeder (built by LPSC for the LNL group). The radioactive beam species are denoted with a halo around them.

Present EBIS charge breeding performance for the REX-EBIS group, a potassium beam produced by the MSU ReA EBIT in 2013 and a cesium beam recently produced by the ANL EBIS.

R. Vondrasek, NIM B 376 (2016)

Major milestones of RISP

7. Concluding remarks

- SCL3 will be the first SC-linac for RISP
- Key technologies in the SC-linac development for nuclear science research are identified and discussed: 1) Design of SClinac, 2) SC-cavity, 3) SC-ECR, 4) RFQ, 5) Charge stripper, 6) EBIS
- Further efforts are needed for RISP to achieve the design goals and required performance to compete with similar facilities in other countries