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1. Introduction 

 
When the reactor power excursion due to a reactivity-

initiated accident occurs, the temperature of the fuel 

pellet increases very rapidly and may even excess the 

melting temperature of the pellet. Once the pellet 

temperature reaches the melting temperature, the phase 

change from solid to liquid occurs at the melting 

temperature. Such a melting process model may not be 

required for the analysis of the design basis accidents 

(DBAs) but is essential for the analysis of the design 

extension conditions (DECs). However, the current 

conduction model of the SPACE code cannot simulate 

the melting process. Therefore, an additional processing 

model for the SPACE [1] code is required to simulate 

the melting process in the reactor components during a 

transient for the analysis of the DEC scenarios. 

 

2. Current Heat Structure Model of SPACE 

 

There are two kinds of the heat conduction model in 

the SPACE code. First one is a one-dimensional heat 

conduction model and the other is a two-dimensional 

heat conduction model. The phase change model has 

been applied to the one-dimensional heat conduction 

model only because the two-dimensional heat 

conduction model is applied to the loss-of-coolant 

accident analysis where no pellet melting is expected. 

The heat conduction equation of the SPACE code is as 

follows: 
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where  

pC : volumetric heat capacity, 

k : thermal conductivity,  

V : volume,  

S : surface area 

q : volumetric heat source 

 

Finite difference method (FDM) is used to get the 

heat conduction solutions. The spatial dependence of 

the internal heat source and the material may vary over 

each mesh interval. User can apply several kinds of the 

boundary conditions such as symmetry or insulated 

conditions, a correlation package, tables of surface 

temperature versus time, heat flux versus time, and heat 

transfer coefficient versus time. Fig. 1 shows a concept 

of the mesh points where the temperatures are defined 

and mesh intervals where the heat source and material 

properties are defined. The red-dashed line in Fig. 1 

means the control volume of the m
th

 mesh point. 

 

 

Fig. 1. Concept of mesh points and mesh intervals 

 

Eq. 2 shows a finite difference form of Eq. 1 by using 

the definition of the spatial structure shown in Fig. 1. 
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3. Phase Change Model 

 

During a phase change, the temperature of a material 

is maintained at the melting temperature due to a large 

heat of fusion, whereas the enthalpy is changed. 

However, as shown in Eq. 2, current FDM of the 

SPACE cannot treat a melting process properly because 

Eq. 2 has no term related with the enthalpy change. For 

considering this effect, we introduced an explicit 

enthalpy equation as shown in Eq. 3 which is similar to 

the phase change model of the FRAPTRAN [2]. 
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  (3) 

where 

m : melting fraction, 

MH : heat of fusion or latent heat, 

meltT : melting temperature, 

b bq A : boundary heat flow (if needed) 

 

Comparing Eq. 3 with Eq. 2, the left hand side (LHS) 

of Eq. 3 is described using the enthalpy and melting 
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fraction and, the temperatures of the m

th
 mesh point in 

the right hand side (RHS) are replaced with the melting 

temperature. Eq. 3 is used to calculate melting fraction 

of the control volume when the structure temperature 

reaches the melting temperature.  

To take account of the effect of the heat of fusion 

during a phase change, the volumetric heat capacity in 

Eq. 2 is replaced with a large value (~10
30

) to make the 

mesh temperature remain equal to the melting 

temperature. The thermal conductivity is also modified 

considering the melting fraction. 

When the temperature exceeds the melting 

temperature for the first time, initial melting fraction is 

determined by using the excess enthalpy as shown in Eq. 

4. 
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where 

0 : initial melting fraction, 

excessH : excess enthalpy 

 

Once melting or solidification process is completed, 

the temperature is determined by Eq. 5 considering the 

excess melting fraction. 
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where 
L is a limit of melting fraction and 

,p LC is a 

limit of specific heat. Each value of 
L and 

,p LC is 

dependent upon the phase change process as shown in 

Table I. 

 

Table I: value of 
L and 

,p LC  

 melting ( 1 1n

m
  ) freezing ( 1 0n

m
  ) 

L  1 0 

,p LC  
,p liquidC  

,p solidC  

 

After completion of the phase change, the 

temperature is calculated by using Eq. 2 again but the 

material properties corresponding to the state of 

material (solid or liquid) are used. 

 

4. Validation 

 

To validate the enthalpy-based phase change model, 

Stefan’s problem [3] was selected as a validation 

problem. Fig. 2 shows the typical geometry for Stefan’s 

problem. The phase change material (PCM) is semi-

infinite, initially solid at its melting temperature (Tm), 

and at t = 0, the left wall temperature (Tb) is raised to Tb 

> Tm, prompting the PCM to start melting in a linear 

fashion starting at x = 0 by pure conduction. An 

insulated condition was applied for the right boundary 

condition. To apply the temperature boundary condition 

to the left side, a very small artificial mesh point of 

which the interval size (~10
-6

 m) is much smaller than 

those of regular intervals was added to the left boundary 

as shown in Fig. 2. 

 

Tb = 350 K

610x m 

insulation

x = 0

t = 0

L = 0.28 m

Ti = 313 K

0.01 ~ 0.00125x m m 

L = 0.07 m

 
Fig. 2. 1-D conductor model for Stefan’s problem 

 

The size of total dimension is 0.28 m but the problem 

domain is restricted to 0.07 m to satisfy the semi-infinite 

condition of Stefan’s problem. Table II shows the mesh 

information of each case and thermal properties of 

paraffin was obtained from the reference [3]. 

 

Table II: Condition of validation tests 

Case # of mesh* Size of interval 

1 30 0.01 m 

2 58 0.005 m 

3 114 0.0025 m 

4 226 0.00125 m 
* including the artificial mesh point 

 

Test results from Fig. 4 to Fig. 7 show the 

temperature behavior of each test case. Symbols and 

lines in each figure represent the analytical solutions [3] 

and the calculation results, respectively. From the 

figures, it is found that the temperature behavior is very 

sensitive to the mesh size and the accuracy of the 

temperature behavior increased as the number of meshes 

increased because of the characteristic of the conduction 

equation. If the volume of mesh intervals is large, the 

enthalpy and time duration required for the complete 

melting increase, therefore, a step-wise temperature 

behavior is clearly shown in the coarse mesh. However, 

the result of the melting front location, which is an 

indicator of the melting fraction, is much more accurate 

compared with the temperature behavior as shown in 

Fig. 3. Even the result of the coarsest interval (N=28) is 

very close to the analytical solution, so that the phase 

change model based on the enthalpy change is 

applicable to the melting fraction calculation for the 

case of coarse mesh. 

 

5. Conclusions 
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The phase change model based on the enthalpy 

change has been developed and validated through the 

comparison with the analytical solution of Stefan’s 

problem. Although the calculation results were 

dependent on the number of mesh points, overall 

behavior of the results showed a good agreement with 

that of the analytical solutions for the temperature and 

melting front location during a transient. Therefore, the 

phase change model developed by this project can be 

applied to melting analysis of the major reactor 

components such as a reactor pressure vessel as well as 

fuel rod. In addition, to extent the applicable range of 

this model, it is required that the phase change model 

for the 2-D conduction model should be developed near 

future. 
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Fig. 3. Melting front location 
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Fig. 4. Temperatures of Case 1 
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Fig. 5. Temperatures of Case 2 
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Fig. 6. Temperatures of Case 3 
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Fig. 7. Temperatures of Case 4 


