Fabrication and Properties of Metal Matrix Composites as a Neutron Absorber Material of the Spent Fuel Dry Storage System

Ji Won Mun, Tae Gyu Lee, Ho Jin Ryu*

Department of Nuclear and Quantum Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea *corresponding author: hojinryu@kaist.ac.kr

Objectives

✤Fabricating next generation neutron absorbing material with Gd₂O₃/AI MMC.

♦ Comparing properties between conventional dry cask basket material 20vol.% B₄C/AI MMC with Gd₂O₃/AI MMC.

Korean Nuclear Society Spring Meeting, Jeju, Korea, May 17-19, 2017

Introduction

Sample preparation & Procedure

Demand of dry spent nuclear fuel(SNF) storage is increasing because it has more advantages than wet storage such as transportability, expandability of capacity, reduced management and passive safety.

- Neutron absorbing materials is important for dry spent nuclear fuel storage because material can reduce criticality of SNF more effectively and dry storage can store shorter period wet stored spent nuclear fuel.
- When B₄C content is increasing there is a significant decrease of impact energy so 20vol.% is the maximum volume fraction of B₄C reinforcement[1].
- Sy substituting 1.5vol.% Gd₂O₃/AI MMC that has the same effective of 20vol.% B₄C/AI in terms of neutron absorption, better mechanical properties will be achieved.

[1] I. Topcu, H.O. Gulsoy, N. Kadioglu, Journal of Alloys and Compounds 482 (2009) 516–521.

Material properties			
	B ₄ C	Gd ₂ O ₃	Al 7075 powder
Size	40µm	1µm	80µm
Density	2.52g/cm ³	7.07g/cm ³	2.81g/cm ³
Fabrication process			
Powder mixing		Spark Plasma Sintering	
Image: Second it is an analytic of the second it is an analytic			condition: ure: 40 MPa
40 rpm for 5 hours		Holding time: 5min	

Fracture surface and Strain & stress curve

 a) Fracture surface of 20vol.%
 1.

 B₄C/AI MMC
 2.

 Densification:99.52%
 3.

 b) Fracture surface of 1/5vol%
 1.

 Gd2O3/AI MMC
 1.

 Densification:99.55%
 2.

 Suscent to the surface of 1/5vol%
 2.

- 1. The bending strengths of B₄C MMC is 760MPa.
- 2. By image a), dimple structure was observed, which indicates that failure mechanism is ductile fracture.
 - . $B_4C/AI MMC$ shows higher elongation and strength than $Gd_2O_3/AI MMC$.
 - . The bending strengths of Gd₂O₃/AI MMC is 600MPa.
- By image b), only interface separation between Al granules was observed, without deformation.

Microstructure

- 1. No porosity
- 2. Reinforcement is well distributed between Al granules
- **3. AI-AI bond is well formed**

- 1. No porosity
- 2. White Gd₂O₃ particles fully cover Al granule boundary
- 3. Al- Al bond is blocked

Conclusion

- 1. Fully dense 20vol.% B₄C/AI MMC and 1.5vol.% Gd₂O₃/AI MMC was fabricated in this study.
- 2. In Three-point bending test result, high volume fraction B_4C/AI MMC shows higher elongation and strength than Gd_2O_3/AI which is not matched with the general tendency of MMCs.
- 3. SEM image of fracture surface shows that $B_4C/AI MMC$ has a ductile fracture and $Gd_2O_3/AI MMC$ has a brittle fracture.
- 4. Microstructure shows the reinforcement distribution difference causes two different fracture mechanism.
- 5. It is expected that the unified size of B₄C powder and Gd₂O₃ powder will show general MMC behavior.

Nuclear Fuel

Materials Lab

This work was supported by the National Research Foundation of Korea (NRF, No. 2014M3C1A9060721) grant funded by the Ministry of Science, ICT and Future Planning.