An Assessment of Uncertainty for a Head End Process in the Pyroprocessing
 Wonjong Song, Hoyoung Shin, Myeonghyeon Woo, and Moosung JAE'
 Department of Nuclear Engineering, Hanyang University, Seoul, 04763, Korea
 *Corresponding author: jae@hanyang.ac.kr

1. Introduction

- Korea has been developing the pyroprocessing that changes spent fuels of a LWR to fresh fuels of a SFR.
- In the pyroprocessing, a non-destructive analysis, like a ($\mathrm{Pu} /{ }^{244} \mathrm{Cm}$) mass ratio method showed in Eq. (1), is usually used because nuclear material accountancy is controlled by weight unit.
- Heterogeneous $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio of spent fuel rods appears by height when a fuel assembly are burned.
- In this study, we analyzed the heterogeneous the $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio by height of spent fuels according to burnup and cooling periods based on computer simulations, and calculated a uncertainty of the $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio in a head process of the pyroprocessing by random samplings

$$
\begin{equation*}
\text { Pu mass }=\left(\frac{\text { Pu mass }}{{ }^{244} \mathrm{Cm} \text { mass }}\right) \times{ }^{244} \mathrm{Cm} \text { mass } \tag{1}
\end{equation*}
$$

2. Methods and Results

2.1 Reference Reactor

- OPR1000 was selected as a type of reference reactor.
- By analyzing the nuclear design report of OPR1000, we found core design characteristics and selected typical 3 fuel assemblies which are shown in table 1.

Table 1. Information of typical fuel assemblies

Fuel assembly type	Enrichment $\left[{ }^{[} \%{ }^{235} \mathrm{U}\right]$	Burnup $[\mathrm{MWd} / \mathrm{kgU}]$	Number of fuel rods
A0	1.42	$11.6 \sim 14.2$	236
B0	$2.92 / 2.42$	$37.1 \sim 39.7$	$\mathbf{1 8 4 / 5 2}$
C0	$3.43 / 2.93$	$33.8 \sim 4.1$	$\mathbf{1 8 4 / 5 2}$

2.2 Computer codes

- MCNP based on Monte Carlo method is a particle transport analysis code that generates random numbers to describe behavior of particles and estimate a solution of the Boltzmann transport equation.
- CINDER`90 performs a reactor irradiation calculation and solves the Bateman equation to track nuclide change in materials.
- A link system was used to simulate the fuel assembly burnup calculations between MCNP and CINDER` 90 showed in figure 1.
- In the link system, Predictor-Corrector method was used which calculates a ratio of nuclide at the midpoint of each time step to mitigate a oscillation of neutron flux by ${ }^{135} \mathrm{Xe}$.

Figure 1. Link system between MCNP and CINDER'90

2.3 Input file for the computer codes

- To find out the heterogeneous $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio by height of the fuel assembly, middle burnup region was divided into long meshes, and end burnup regions were divided into short meshes
- The burnup periods were set to 400, 500, 600, 700, and 800 days, and the cooling periods were set to $0,10,20,30$, and 40 years.
2.4 Heterogeneous results by height of the fuel assembly
- As a result of the fuel assembly burnup process, heterogeneous results by height appeared for 4 fuel assemblies showed in figure 2.
- The lower the enrichment, the smaller the average $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio and the greater the $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio difference.

Figure 2. ($\mathrm{Pu} /{ }^{244} \mathrm{Cm}$) mass ratio results of each fuel assembly

2.5 Uncertainty analysis using 1,000 random samplings

- We assumed that a fuel assembly is divided into 89,916 pellets in the chopping step, and 9,144 pellets are randomly selected to be oxidized corresponding to $50 \mathrm{kgHM} /$ batch.
- Random samplings of selecting 9,144 pellets out of 89,916 pellets were conducted 1,000 showed in figure 3.
- Uniform probability mass function was used for random samplings.
- Error propagation was used times to calculate uncertainty of the $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio.

Figure 3. Random samplings using uniform PMF

Table 2. Uncertainty of the ($\mathrm{Pu} / 244 \mathrm{Cm}$) mass ratio by random samplings

Fuel assemb -ly	Cooling Period [yr]	Burnup period [days]									
		400		500		600		700		800	
		ratio	SD								
A0	0	1212.8	7.8	560.8	3.4	310.4	1.7	190.2	1.0	128.5	0.6
	10	1723.3	11.4	793.3	4.6	438.0	2.4	267.9	1.4	180.8	0.9
	20	2454.8	17.1	1128.3	6.8	621.4	3.2	379.9	1.9	256.0	1.2
	30	3538.0	22.8	1621.4	9.9	890.9	4.9	544.8	2.8	367.2	1.9
	40	5126.4	31.9	2345.8	13.9	1288.8	7.0	787.0	4.1	530.3	2.7
B0	0	5922.0	33.2	2296.4	11.6	1092.6	5.2	599.2	2.7	363.5	1.5
	10	8467.1	47.1	3262.6	16.2	1544.8	7.4	844.3	3.6	510.4	2.2
	20	12137.3	66.0	4659.4	23.6	2199.1	10.5	1199.0	5.5	724.0	3.0
	30	17553.6	90.3	6718.7	33.7	3164.0	14.9	1722.4	7.7	1037.8	4.3
	40	25503.9	137.3	9747.9	48.7	4581.0	21.4	2491.4	11.5	1500.7	6.5
C0	0	8743.4	46.7	3351.2	16.6	1564.0	7.6	846.0	3.7	501.3	2.1
	10	12528.6	67.4	4772.6	23.4	2213.8	10.6	1193.9	5.4	705.0	3.1
	20	18009.0	96.2	6829.9	33.6	3156.8	15.0	1697.3	7.4	999.8	4.3
	30	26049.2	140.4	9852.1	49.1	4545.8	21.8	2439.2	10.8	1434.5	6.1
	40	37894.6	202.8	14297.8	73.9	6590.0	31.6	3530.3	15.7	2074.7	8.9

3. Conclusion

- It is confirmed that the heterogeneous $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio appears in the spent fuel assemblies.
- Uncertainty of the $\left(\mathrm{Pu} /{ }^{244} \mathrm{Cm}\right)$ mass ratio was calculated by the 1,000 random samplings using uniform probability mass function.
- A methodology of this study could be used to enhance accuracy of the nuclear material accountancy.

