An Assessment of Uncertainty for a Head End Process in the Pyroprocessing

Wonjong Song, Hoyoung Shin, Myeonghyeon Woo, and Moosung JAE* Department of Nuclear Engineering, Hanyang University, Seoul, 04763, Korea *Corresponding author: jae@hanyang.ac.kr

1. Introduction

- Korea has been developing the pyroprocessing that changes spent fuels of a LWR to fresh fuels of a SFR.
- In the pyroprocessing, a non-destructive analysis, like a (Pu/²⁴⁴Cm) mass ratio method showed in Eq. (1), is usually used because nuclear material accountancy is controlled by weight unit.
- Heterogeneous (Pu/²⁴⁴Cm) mass ratio of spent fuel rods appears by height when a fuel assembly are burned.
- In this study, we analyzed the heterogeneous the (Pu/²⁴⁴Cm) mass ratio by height of spent fuels according to burnup and cooling periods based

2.4 Heterogeneous results by height of the fuel assembly

- As a result of the fuel assembly burnup process, heterogeneous results by height appeared for 4 fuel assemblies showed in figure 2.
- The lower the enrichment, the smaller the average (Pu/²⁴⁴Cm) mass ratio and the greater the (Pu/²⁴⁴Cm) mass ratio difference.

on computer simulations, and calculated a uncertainty of the $(Pu/^{244}Cm)$ mass ratio in a head process of the pyroprocessing by random samplings.

$$Pu mass = \left(\frac{Pu mass}{^{244}Cm mass}\right) \times {}^{244}Cm mass \qquad (1)$$

2. Methods and Results

2.1 Reference Reactor

- OPR1000 was selected as a type of reference reactor.
- By analyzing the nuclear design report of OPR1000, we found core design characteristics and selected typical 3 fuel assemblies which are shown in table 1.

Table 1. Information of typical fuel assemblies

Fuel assembly type	Enrichment [w% ²³⁵ U]	Burnup [MWd/kgU]	Number of fuel rods
A0	1.42	11.6~14.2	236
B0	2.92/2.42	37.1~39.7	184/52
C0	3.43/2.93	33.8~44.1	184/52

2.5 Uncertainty analysis using 1,000 random samplings

- We assumed that a fuel assembly is divided into 89,916 pellets in the chopping step, and 9,144 pellets are randomly selected to be oxidized corresponding to 50kgHM/batch.
- Random samplings of selecting 9,144 pellets out of 89,916 pellets were conducted 1,000 showed in figure 3.
- Uniform probability mass function was used for random samplings.
- Error propagation was used times to calculate uncertainty of the $(Pu/^{244}Cm)$ mass ratio.

2.2 Computer codes

- MCNP based on Monte Carlo method is a particle transport analysis code that generates random numbers to describe behavior of particles and estimate a solution of the Boltzmann transport equation.
- CINDER`90 performs a reactor irradiation calculation and solves the Bateman equation to track nuclide change in materials.
- A link system was used to simulate the fuel assembly burnup calculations between MCNP and CINDER`90 showed in figure 1.
- In the link system, Predictor-Corrector method was used which calculates a ratio of nuclide at the midpoint of each time step to mitigate a oscillation of neutron flux by ¹³⁵Xe.

Figure 3. Random samplings using uniform PMF

Fuel	Cooling	Burnup period [days]										
assemb	Period	400		500		600		700		800		
-ly	[yr]	ratio	SD	ratio	SD	ratio	SD	ratio	SD	ratio	SD	
AO	0	1212.8	7.8	560.8	3.4	310.4	1.7	190.2	1.0	128.5	0.6	
	10	1723.3	11.4	793.3	4.6	438.0	2.4	267.9	1.4	180.8	0.9	
	20	2454.8	17.1	1128.3	6.8	621.4	3.2	379.9	1.9	256.0	1.2	
	30	3538.0	22.8	1621.4	9.9	890.9	4.9	544.8	2.8	367.2	1.9	
	40	5126.4	31.9	2345.8	13.9	1288.8	7.0	787.0	4.1	530.3	2.7	
BO	0	5922.0	33.2	2296.4	11.6	1092.6	5.2	599.2	2.7	363.5	1.5	
	10	8467.1	47.1	3262.6	16.2	1544.8	7.4	844.3	3.6	510.4	2.2	
	20	12137.3	66.0	4659.4	23.6	2199.1	10.5	1199.0	5.5	724.0	3.0	
	30	17553.6	90.3	6718.7	33.7	3164.0	14.9	1722.4	7.7	1037.8	4.3	
	40	25503.9	137.3	9747.9	48.7	4581.0	21.4	2491.4	11.5	1500.7	6.5	
CO	0	8743.4	46.7	3351.2	16.6	1564.0	7.6	846.0	3.7	501.3	2.1	
	10	12528.6	67.4	4772.6	23.4	2213.8	10.6	1193.9	5.4	705.0	3.1	
	20	18009.0	96.2	6829.9	33.6	3156.8	15.0	1697.3	7.4	999.8	4.3	
	30	26049.2	140.4	9852.1	49.1	4545.8	21.8	2439.2	10.8	1434.5	6.1	
	40	37894.6	202.8	14297.8	73.9	6590.0	31.6	3530.3	15.7	2074.7	8.9	

Table 2. Uncertainty of the (Pu/244Cm) mass ratio by random samplings

Figure 1. Link system between MCNP and CINDER`90

2.3 Input file for the computer codes

- To find out the heterogeneous (Pu/²⁴⁴Cm) mass ratio by height of the fuel assembly, middle burnup region was divided into long meshes, and end burnup regions were divided into short meshes.
- The burnup periods were set to 400, 500, 600, 700, and 800 days, and the cooling periods were set to 0, 10, 20, 30, and 40 years.

3. Conclusion

- It is confirmed that the heterogeneous (Pu/²⁴⁴Cm) mass ratio appears in the spent fuel assemblies.
- Uncertainty of the (Pu/²⁴⁴Cm) mass ratio was calculated by the 1,000 random samplings using uniform probability mass function.
- A methodology of this study could be used to enhance accuracy of the nuclear material accountancy.

Nuclear Safety Analysis Labo