
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2017

A Technique of Software Safety Analysis in the Design Phase
for PLC Based Safety-Critical Systems

Seo-Ryong Koo and Chang-Hwoi Kim

I&C/HF Research Division, Korea Atomic Energy Research Institute
111 Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Korea

*Corresponding author: srkoo@kaeri.re.kr

1. Introduction

As a software verification and validation should be
performed for the development of PLC based safety-
critical systems, a software safety analysis is also
considered in line with entire software life cycle [1].
The purpose of safety analysis, which is a method of
identifying portions of a system that have the potential
for unacceptable hazards, is firstly to encourage design
changes that will reduce or eliminate hazards and,
secondly, to conduct special analyses and tests that can
provide increased confidence in especially vulnerable
portions of the system. A hazard is a state or set of
conditions of a system (or an object) that, together with
other conditions in the environment of the system (or
object), will lead inevitably to an accident (loss event)
[2]. The main hazards in a nuclear reactor are the
possibility of a rapid, energetic fission reaction and the
release of radioactive fission products, which are waste
products of the fission reaction.

Fig. 1. Software Hazard Analysis within the Software Life
cycle.

In the development of NPP systems, software

hazard analysis should be a defined aspect of the
software life cycle. Fig. 1 shows the general approach
with respect to the technical development activities
(namely, the requirements, architecture, design, and
code), as well as the activities of V&V and hazard
analysis. Although V&V is not considered part of
hazard analysis, the results of V&V may be of use. For
instance, we used the results of various software hazard
analyses to appropriately change the design of the

protection system and architecture of the software, and
to identify the portions of the software that required
increased attention to quality. As shown in Fig. 1, in
line with the software life cycle, software hazard
analysis consists of requirements hazard analysis,
design hazard analysis (actually, it is divided into
architectural design and detailed design), and code
hazard analysis.

Currently, in NPP Instrumentation and Control
(I&C) systems, a Programmable Logic Controller
(PLC) is being considered for safety-class hardware. In
this study, for the PLC-based safety-critical software,
we newly propose a software design safety analysis
technique based on the NuFDS (nuclear FBD-style
design specification) approach. The NuFDS approach is
composed of a software design specification technique
and a software design analysis technique.

2. Fault Tree Synthesis

Several procedures have been proposed for the

automatic synthesis of fault trees. In the synthesis, the
fault tree is built by matching the inputs and outputs of
mini-fault trees. We now describe a technique for
generating fault trees from the architecture specification
of the NuFDS approach. To systematically translate the
NuFDS specification into fault trees, we define a
template for constructing fault trees and we used the
template to intuitively compose the architecture
specification [3].

This section describes how to generate a fault tree
from the architecture specification of the NuFDS. As an
example, we used a bistable processor (BP) of the
KNICS digital plant protection system [4]. The KNICS
digital plant protection system has three subsystems: a
reactor protection system (RPS), an engineered safety
features-component control system (ESF-CCS), and an
automatic test and interface processor (ATIP). The RPS,
which comprises a bistable processor (BP) and a
coincidence processor (CP), uses trip logic to ensure
that the plant can be safely shut down in emergency
situations; for example, when there is an increased
reactor temperature or loss of coolant. The ESF-CCS,
which has similar features to the RPS, attempts to
reduce the influence of other reactor accidents. The
ATIP, on the other hand, periodically tests the RPS to
ensure the ongoing safety of the plant. Of the
components of the KNICS digital protection system, the
BP is the one we selected to exemplify the fault tree

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2017

synthesis. The fault tree synthesis comprises the
following four steps:

Step 1: Define top event of fault tree.
The first step of the fault tree synthesis is to define

the highest level of the architecture module as a top
event of the failure mode. In Fig. 2, an architecture
design block is used to show a software architecture
specification of the BP. As shown in Fig. 2, the top
event is simply defined as ‘FAILURE OF RPS_BP1’,
which means the failure mode of the BP in channel 1 of
the reactor protection system.

Fig. 2. Software Architecture Specification of BP.

Step 2: Compose intermediate events.
In the FTA, the intermediate events are pseudo

events between the top event and the leaf nodes in the
tree. For our fault tree synthesis, the second step
composes these intermediate events directly. Fig. 3
shows the results of the second step. This fault tree is
first transformed from the architecture specification
shown in Fig. 2.

FAILURE OF RPS_BP1

BP1-TOP-00

FAILURE OF HW CHECK
MODULE

BP1-HC-01

FAILURE OF BISTABLE
MODULE

BP1-BI-02

FAILURE OF SIGNAL
CHECK MODULE

BP1-BI-02-1

FAILURE OF BYPASS
MODULE

BP1-BI-02-2

FAILURE OF TRIP/PTRIP
MODULE

BP1-BI-02-3

FAILURE OF
HEARTBEAT MODULE

BP1-HB-03

FAILURE OF
COMMUNICATION
MODULE

BP1-COM-04

Fig. 3. Composition of Intermediate Events in Step 2.

Step 3: Transform basic events into template.
The third step is to define basic events and to

transform those basic events into the template for the
fault tree synthesis described in [3].

If there are any events that have no more sub-
modules, those modules are considered as basic events
in the fault tree. In Fig. 2, the basic events in the fault

tree are H/W_Check_Module, Heartbeat_Module, and
Comm_module, which are the lower level modules of
RPS_BP1, along with Signal_Check_Module,
Bypass_Moudule, and Trip/PreTrip_Module, which are
the lower level modules of Bistable_Module. These
basic events should have the failure modes defined in
[3] as a template. In step 3, therefore, the basic events
should be directly transformed into the template for our
proposed fault tree synthesis. Fig. 4 shows the
completed fault tree transformed from the architecture
specification of the BP.

FAILURE OF RPS_BP1

BP1-TOP-00

FAILURE OF HW CHECK
MODULE

BP1-HC-01

FAILURE OF BISTABLE
MODULE

BP1-BI-02

FAILURE OF SIGNAL
CHECK MODULE

BP1-BI-02-1

FAILURE OF BYPASS
MODULE

BP1-BI-02-2

FAILURE OF TRIP/PTRIP
MODULE

BP1-BI-02-3

FAILURE OF PLC
HARDWARE

BP1-BI-02-3-1

COMMAN CAUSE
FAILURE OF PLC

BP1-BI-02-3-2

FAILURE OF MODULE
SOFTWARE

BP1-BI-02-3-3

I/O FAILS TO PRODUCE
PROPER VALUE

BP1-BI-02-3-3-1

FUNCTION FAILS TO
PRODUCE PROPER
VALUE

BP1-BI-02-3-3-2

LOGIC ERROR IN
MODULE

BP1-BI-02-3-3-3

FAILURE OF
HEARTBEAT MODULE

BP1-HB-03

FAILURE OF
COMMUNICATION
MODULE

BP1-COM-04

Fig. 4. Transformed Fault Trees.

Step 4: Software design safety analysis.
The final step of the fault tree synthesis is a

software design safety analysis on the basis of the
generated fault trees. In this step, both qualitative and
quantitative analyses are possible with the aid of the
generated fault trees. However, we focus on the
qualitative analysis in this study because the data on the
failure probability of the software modules for the
quantitative analysis is not yet well defined. The basic
purpose of the qualitative analysis is to reduce the tree
to a logically equivalent form that shows the specific
combinations of basic events sufficient to cause the top
event. The final goal of the analysis is to find the
minimal cut sets. These cut sets, which cannot be
reduced in number, represent the basic events that will
cause the top event—that is, a cut set does not contain
another cut set. Moreover, cut sets are defined in such a
way that if even one event in the cut set does not occur,
the top event will not occur.

3. Conclusions

For the design and implementation phase of the

PLC based systems, we proposed a technique for
software design specification and analysis, and this
technique enables us to generate software design

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2017

specifications (SDSs) in nuclear fields. For the safety
analysis in the design phase, we used architecture
design blocks of NuFDS to represent the architecture of
the software. On the basis of the architecture design
specification, we can directly generate the fault tree and
then use the fault tree for qualitative analysis. Therefore,
we proposed a technique of fault tree synthesis, along
with a universal fault tree template for the architecture
modules of nuclear software.

Through our proposed fault tree synthesis in this
work, users can use the architecture specification of the
NuFDS approach to intuitively compose fault trees that
help analyze the safety design features of software. A
translated fault tree can help users to easily identify
software hazards; it also helps them to find software
weaknesses by analyzing cut sets. Consequently, we
can analyze the safety of software on the basis of fault
tree synthesis.

REFERENCES

[1] U.S. NRC, NUREG-6430: Software Safety Hazard
Analysis Version 2.0, UCRL-ID-122514, 1995.
[2] Nancy G. Leveson, SAFEWARE – System Safety and
Computers, Addison-Wesley Publication Company, New
York, 1995.
[3] Seo Ryong Koo and Poong Hyun Seong, “Software design
specification and analysis technique (SDSAT) for the
development of safety-critical systems based on a
programmable logic controller (PLC)”, Reliability
Engineering & System Safety, Volume 91, Issue 6, Pages
648-664, June 2006.
[4] Chang-Hwoi Kim, Joo-Hyun Park, and Dong-Young Lee,
“Development of a Safety I&C Systems for NPP”,
Transactions of Korean Nuclear Society Meeting, 2005.

