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1. Introduction 
 

As a software verification and validation should be 
performed for the development of PLC based safety-
critical systems, a software safety analysis is also 
considered in line with entire software life cycle [1]. 
The purpose of safety analysis, which is a method of 
identifying portions of a system that have the potential 
for unacceptable hazards, is firstly to encourage design 
changes that will reduce or eliminate hazards and, 
secondly, to conduct special analyses and tests that can 
provide increased confidence in especially vulnerable 
portions of the system. A hazard is a state or set of 
conditions of a system (or an object) that, together with 
other conditions in the environment of the system (or 
object), will lead inevitably to an accident (loss event) 
[2]. The main hazards in a nuclear reactor are the 
possibility of a rapid, energetic fission reaction and the 
release of radioactive fission products, which are waste 
products of the fission reaction. 

 

 
Fig. 1. Software Hazard Analysis within the Software Life 
cycle. 

 
In the development of NPP systems, software 

hazard analysis should be a defined aspect of the 
software life cycle. Fig. 1 shows the general approach 
with respect to the technical development activities 
(namely, the requirements, architecture, design, and 
code), as well as the activities of V&V and hazard 
analysis. Although V&V is not considered part of 
hazard analysis, the results of V&V may be of use. For 
instance, we used the results of various software hazard 
analyses to appropriately change the design of the 

protection system and architecture of the software, and 
to identify the portions of the software that required 
increased attention to quality. As shown in Fig. 1, in 
line with the software life cycle, software hazard 
analysis consists of requirements hazard analysis, 
design hazard analysis (actually, it is divided into 
architectural design and detailed design), and code 
hazard analysis.  

Currently, in NPP Instrumentation and Control 
(I&C) systems, a Programmable Logic Controller 
(PLC) is being considered for safety-class hardware. In 
this study, for the PLC-based safety-critical software, 
we newly propose a software design safety analysis 
technique based on the NuFDS (nuclear FBD-style 
design specification) approach. The NuFDS approach is 
composed of a software design specification technique 
and a software design analysis technique. 

 
2. Fault Tree Synthesis 

 
Several procedures have been proposed for the 

automatic synthesis of fault trees. In the synthesis, the 
fault tree is built by matching the inputs and outputs of 
mini-fault trees. We now describe a technique for 
generating fault trees from the architecture specification 
of the NuFDS approach. To systematically translate the 
NuFDS specification into fault trees, we define a 
template for constructing fault trees and we used the 
template to intuitively compose the architecture 
specification [3]. 

This section describes how to generate a fault tree 
from the architecture specification of the NuFDS. As an 
example, we used a bistable processor (BP) of the 
KNICS digital plant protection system [4]. The KNICS 
digital plant protection system has three subsystems: a 
reactor protection system (RPS), an engineered safety 
features-component control system (ESF-CCS), and an 
automatic test and interface processor (ATIP). The RPS, 
which comprises a bistable processor (BP) and a 
coincidence processor (CP), uses trip logic to ensure 
that the plant can be safely shut down in emergency 
situations; for example, when there is an increased 
reactor temperature or loss of coolant. The ESF-CCS, 
which has similar features to the RPS, attempts to 
reduce the influence of other reactor accidents. The 
ATIP, on the other hand, periodically tests the RPS to 
ensure the ongoing safety of the plant. Of the 
components of the KNICS digital protection system, the 
BP is the one we selected to exemplify the fault tree 
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synthesis. The fault tree synthesis comprises the 
following four steps: 

 
Step 1: Define top event of fault tree.  
The first step of the fault tree synthesis is to define 

the highest level of the architecture module as a top 
event of the failure mode. In Fig. 2, an architecture 
design block is used to show a software architecture 
specification of the BP. As shown in Fig. 2, the top 
event is simply defined as ‘FAILURE OF RPS_BP1’, 
which means the failure mode of the BP in channel 1 of 
the reactor protection system.  

 

 
Fig. 2. Software Architecture Specification of BP. 

 
Step 2: Compose intermediate events.  
In the FTA, the intermediate events are pseudo 

events between the top event and the leaf nodes in the 
tree. For our fault tree synthesis, the second step 
composes these intermediate events directly. Fig. 3 
shows the results of the second step. This fault tree is 
first transformed from the architecture specification 
shown in Fig. 2.  

 
FAILURE OF RPS_BP1

BP1-TOP-00

FAILURE OF HW CHECK 
MODULE

BP1-HC-01

FAILURE OF BISTABLE 
MODULE

BP1-BI-02

FAILURE OF SIGNAL 
CHECK MODULE

BP1-BI-02-1

FAILURE OF BYPASS 
MODULE

BP1-BI-02-2

FAILURE OF TRIP/PTRIP 
MODULE

BP1-BI-02-3

FAILURE OF 
HEARTBEAT MODULE

BP1-HB-03

FAILURE OF 
COMMUNICATION 
MODULE

BP1-COM-04

 
Fig. 3. Composition of Intermediate Events in Step 2. 

 
Step 3: Transform basic events into template.  
The third step is to define basic events and to 

transform those basic events into the template for the 
fault tree synthesis described in [3].  

If there are any events that have no more sub-
modules, those modules are considered as basic events 
in the fault tree. In Fig. 2, the basic events in the fault 

tree are H/W_Check_Module, Heartbeat_Module, and 
Comm_module, which are the lower level modules of 
RPS_BP1, along with Signal_Check_Module, 
Bypass_Moudule, and Trip/PreTrip_Module, which are 
the lower level modules of Bistable_Module. These 
basic events should have the failure modes defined in 
[3] as a template. In step 3, therefore, the basic events 
should be directly transformed into the template for our 
proposed fault tree synthesis. Fig. 4 shows the 
completed fault tree transformed from the architecture 
specification of the BP.  

 
FAILURE OF RPS_BP1

BP1-TOP-00

FAILURE OF HW CHECK 
MODULE

BP1-HC-01

FAILURE OF BISTABLE 
MODULE

BP1-BI-02

FAILURE OF SIGNAL 
CHECK MODULE

BP1-BI-02-1

FAILURE OF BYPASS 
MODULE

BP1-BI-02-2

FAILURE OF TRIP/PTRIP 
MODULE

BP1-BI-02-3

FAILURE OF PLC 
HARDWARE

BP1-BI-02-3-1

COMMAN CAUSE 
FAILURE OF PLC

BP1-BI-02-3-2

FAILURE OF MODULE 
SOFTWARE

BP1-BI-02-3-3

I/O FAILS TO PRODUCE 
PROPER VALUE

BP1-BI-02-3-3-1

FUNCTION FAILS TO 
PRODUCE PROPER 
VALUE

BP1-BI-02-3-3-2

LOGIC ERROR IN 
MODULE

BP1-BI-02-3-3-3

FAILURE OF 
HEARTBEAT MODULE

BP1-HB-03

FAILURE OF 
COMMUNICATION 
MODULE

BP1-COM-04

 
Fig. 4. Transformed Fault Trees. 

 
Step 4: Software design safety analysis.  
The final step of the fault tree synthesis is a 

software design safety analysis on the basis of the 
generated fault trees. In this step, both qualitative and 
quantitative analyses are possible with the aid of the 
generated fault trees. However, we focus on the 
qualitative analysis in this study because the data on the 
failure probability of the software modules for the 
quantitative analysis is not yet well defined. The basic 
purpose of the qualitative analysis is to reduce the tree 
to a logically equivalent form that shows the specific 
combinations of basic events sufficient to cause the top 
event. The final goal of the analysis is to find the 
minimal cut sets. These cut sets, which cannot be 
reduced in number, represent the basic events that will 
cause the top event—that is, a cut set does not contain 
another cut set. Moreover, cut sets are defined in such a 
way that if even one event in the cut set does not occur, 
the top event will not occur.  

 
3. Conclusions 

 
For the design and implementation phase of the 

PLC based systems, we proposed a technique for 
software design specification and analysis, and this 
technique enables us to generate software design 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 18-19, 2017 

 
 
specifications (SDSs) in nuclear fields. For the safety 
analysis in the design phase, we used architecture 
design blocks of NuFDS to represent the architecture of 
the software. On the basis of the architecture design 
specification, we can directly generate the fault tree and 
then use the fault tree for qualitative analysis. Therefore, 
we proposed a technique of fault tree synthesis, along 
with a universal fault tree template for the architecture 
modules of nuclear software.  

Through our proposed fault tree synthesis in this 
work, users can use the architecture specification of the 
NuFDS approach to intuitively compose fault trees that 
help analyze the safety design features of software. A 
translated fault tree can help users to easily identify 
software hazards; it also helps them to find software 
weaknesses by analyzing cut sets. Consequently, we 
can analyze the safety of software on the basis of fault 
tree synthesis. 
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