Establishment and Preliminary Verification of the nTRACER-RENUS Core Analysis System

May 19, 2017

Jeong Jun Ho, Ban Young Suk and Joo Han Gyu Seoul National University Reactor Physics Lab.

Contents

□ Introduction

- Motivation
- nTRACER-RENUS Core Analysis System
- □ Group Constants Generation using nTRACER
 - Homogenization and Condensation
 - Treatment Reflector GC
- □ Functionalization of GCs using N2R
- Preliminary Verification
 - Steady State
 - T/H Feedback
 - Depletion

Conclusions and Future work

□ Recent trend for core analysis

□ Two-step method vs Recent trend

- It is still preferred in the industrial applications.
- Because it can give the result pretty fast with tolerable accuracy.
- ⇒ Establish core analysis system based on two-step method at SNU by development of utility code, named N2R(nTRACER-to-RENUS)

□ Purpose of this paper

- Introduce the detailed procedure of generating and functionalizing GCs
- Perform preliminary verification of the core analysis system with N2R

About nTRACER-RENUS System

□ nTRACER and RENUS

- nTRACER
 - 2D planar MOC /1D axial Nodal + 3D CMFD acceleration
 - GCs generation
- RENUS
 - 3D Nodal code based two-node SENM with 3D CMFD acceleration

□ nTRACER-RENUS Core Analysis System

⇒ Two step calculation system using nTRACER and RENUS

□ Procedure

□ Spatial Homogenization : Flux volume

$$\overline{\Sigma}_{x,g}\overline{\phi}_{g}V = RR_{x,g}V = \overline{\Sigma}_{x,g}\sum_{i}^{V}\phi_{g,i}V_{i} = \sum_{i}^{V}\Sigma_{x,g,i}\phi_{g,i}V_{i}$$

$$\overline{\Sigma}_{x,g} = \frac{RR_{x,g}}{\overline{\phi}_g} = \frac{\sum_{i}^{V} \Sigma_{x,g,i} \phi_{g,i} V_i}{\sum_{i}^{V} \phi_{g,i} V_i}$$

 $\overline{\Sigma}_{x,G} = \frac{\sum_{g \in G} \overline{\Sigma}_{x,g} \overline{\phi}_g}{\sum_{g \in G} \overline{\phi}_g}$

□ Group Condensation : Spectrum

$$\overline{\Sigma}_{x,G}\overline{\phi}_{G}=\overline{\Sigma}_{x,G}\sum_{g\in G}\overline{\phi}_{g}=\sum_{g\in G}\overline{\Sigma}_{x,g}\overline{\phi}_{g}$$

$$\overline{\Sigma}_{tr,g} = \frac{\sum_{i}^{V} \Sigma_{tr,g,i} \phi_{g,i} V_{i}}{\sum_{i}^{V} \phi_{g,i} V_{i}} \longrightarrow D_{g} = \frac{1}{3\overline{\Sigma}_{tr,g}} \longrightarrow D_{G} = \frac{\sum_{g \in G} D_{g} \overline{\phi}_{g}}{\sum_{g \in G} \overline{\phi}_{g}}$$

□ Type of reflectors in a core

A0	A0	C 3	A0	B1	A0	В3	C2	В0	R0
A0	В3	A0	В3	A0	B1	A 0	В3	C0	R0
C3	A 0	C2	A 0	C3	A 0	C3	B1	В0	R0
A 0	В3	A 0	В3	A 0	В3	A 0	В2	C0	R0
B1	A 0	C3	A 0	C2	A 0	В1	C0	R1	R2
A 0	B1	A 0	В3	A 0	В3	C1	C0	R0	
В3	A 0	C3	A 0	B1	C1	C0	R1	R2	
C2	В3	B1	B2	C0	C0	R1	R2		-
В0	C0	В0	C0	R1	R0	R2		-	
R0	R0	R0	R0	R2			-		

- Type 1 : I-Type

- Type 2 : L-Type

00	
R0	

00

C0	C0
C0	R1

-	Туре	3:	Corner	Туре
---	------	----	--------	------

C0	R0
RO	R2

< APR1400 Core >

Generation of Reflector GCs

Procedure

• Solve two box heterogeneous local problem = reference

- Get homogenized & condensed XS : $\boldsymbol{\Sigma}_{\mathit{fuel}}^{*},\,\boldsymbol{\Sigma}_{\mathit{refl}}^{*}$
- Solve two one-node homogeneous problems with B.C. from reference
- Obtain a discontinuity factor from homogeneous solution

$$\phi_{surf}^* = f_L \phi_{surf}^{fuel} = f_R \phi_{surf}^{refl} \quad \rightarrow \quad \phi_{surf}^{fuel} = \frac{f_R}{f_L} \phi_{surf}^{refl} = f^* \phi_{surf}^{refl}$$

• Multiply $f_{\rm ADF}$ and Get the DF of reflector

 f_{ADF} f^*

Fuel Ref

$$f_{ADF}\phi_{surf}^{fuel} = f_{ADF}f^*\phi_{surf}^{refl} = f_{refl}\phi_{surf}^{refl}$$

$$\Sigma_{refl}^* \qquad \qquad \therefore f_{refl} = f_{ADF}f^*$$

 Σ_{fuel}^{SA}

Functionalization of GCs

□ Development of N2R(nTRACER-to-RENUS)

- In order to functionalize the GCs generated by nTRACER
- Tabulate isotope-wise microscopic XSs → perform depletion calculation
- Apply leakage correction such as LFM and treat multiple branch cases
 - → get more accuracy

* LFM :Leakage Feedback Method,

which considers actual leakage effect in a core through functionalization on leakage fraction

□ Equation for T/H feedback and depletion

$$\sigma(BU, ppm, T_f, T_m, \rho_m) = \begin{pmatrix} \sigma(BU, ppm_0, T_{f0}, T_{m0}, \rho_{m0}) \\ + \frac{\partial \sigma}{\partial ppm} (ppm - ppm_0) + \frac{\partial \sigma}{\partial \sqrt{T_f}} (\sqrt{T_f} - \sqrt{T_{f0}}) \\ + \frac{d\sigma}{\partial T_m} (T_m - T_{m0})^* + \frac{\partial \sigma}{\partial \rho_m} (\rho_m - \rho_{T_m, P_0})^{**} \end{pmatrix} (1 + \frac{\partial \sigma}{\partial L} L) \qquad \qquad \boxed{L = \frac{\int_{V}^{S} J \cdot dA}{\int_{V} \Sigma_r \phi \cdot dV} = \frac{l}{\Sigma_r \phi}}$$

* Mod. temperature term : including mod. density change

** Mod. density term : considering pressure drop of the core such as LOCA

Functionalization of GCs

X Auto-selection scheme of burnup points

• Determine the burnup points automatically in the functionalized GC table

• Process

- Give initial burnup points and an acceptable error as an input
- Calculate k_{∞} at non-selected points with interpolation method
 - * 2nd order Lagrange method or the piece-wise linear scheme
- Select a additional burnup point which has maximum error
- Repeat until errors of all points are under the criteria

< Example : $y=x^3$ >

⇒ Obtain a downsized GC set

with desired accuracy and fewer burnup points!

Functionalization of GCs

% Results of Auto-selection scheme with 2 Interpolation methods

- Total points : 61 / Initial points : 2 / Acceptable error : 50 pcm
- Select only 9 or 11 burnup points among 61 fine points ⇒ 1/6 !

□ Core type for verification : APR1400

□ Base and branch conditions of GCs : 1 + 16 cases

	Boron(ppm)	Fuel Temp. (°C)	Mod. Temp. (°C)	Mod. Density(g/cm ³)
Base	1200	606.68	308.94	0.7072
1	1	291.30	291.30	0.6938
2	300	450.00	300.00	0.6989
3	600	817.42	316.95	0.7037
4	900	1145.13	324.83	0.7083

□ Problems for verification

- Steady State : SA, CB and 2D core problem
 - * Apply Leakage correction : B1 method, LFM and PAT
- T/H feedback : 1D axial SA problem
- Depletion : SA and 2D CB problem

Reference : nTRACER(Direct whole core transport solution, 47G)

SNIIRPI

□ Single assembly : exactly same as nTRACER results

□ Checkerboard(B3C0)

		HFP(1	Fixed temp., T	/H off)	HFP(T/H on)			
Case		k "cc	Δho	RMS	k _{eff}	Δρ	RMS	
		ejj	(<i>pcm</i>)	(%)	cjj	(<i>pcm</i>)	(%)	
	nTRACER	1.09304	-	-	1.09406	-	-	
20	SA*	1.09432	107	0.83	1.09566	133	0.74	
2D	B1 **	1.09184	-101	0.73	1.09328	-65	0.75	
	LFM***	1.09293	-9	0.10	1.09430	20	0.12	
	nTRACER	1.08887	-	-	1.08759	-	-	
20	SA	1.09013	106	0.84	1.08933	147	0.75	
3D	B1	1.08765	-103	0.72	1.08695	-54	0.73	
	LFM	1.08859	-24	0.24	1.08782	19	0.13	

* SA : Single assembly infinite medium GC without any leakage correction

** B1 : SA GC with B1 leakage correction method

*** LFM : Leakage Feedback Method, which considers actual leakage effect in a core **** P.RMS : Assembly-wise power RMS

- SA GC result without any leakage correction is not bad.
- B1 method can give slight improvement from SA GC result.
- With LFM, there are remarkable accuracy improvement !

B3

C0

C0

B3

Steady State Test

□ 2D core

	H	FP(Fixed t	emp., T/H	l off)	HFP(T/H on)			
Case	$k_{e\!f\!f}$	Δρ (pcm)	P.RMS (%)	MAX. P. Diff. (%)	$k_{_{e\!f\!f}}$	Др (pcm)	P.RMS (%)	MAX. P. Diff. (%)
nTRACER	0.99218	-	-	-	0.99313			
SA	0.99228	10	6.20	11.05	0.99321	8	3.73	6.47
B 1	0.99113	-106	2.03	4.37	0.99223	-91	0.93	1.70
LFM	0.99257	40	0.98	2.09	0.99373	60	0.60	1.10
LFM+PAT*	0.99241	24	0.58	1.07	0.99358	46	1.08	1.94

* PAT : Peripheral Assembly Treatment

- LFM case assures of accurate result
- LFM with PAT case has significant accuracy,

although it with T/H on has more error than LFM case.

 \rightarrow It seem that PAT performed over-correction when using T/H on

• Relative power difference of LFM+PAT cases

-1.1	-1.0	-0.6	-0.7	0.0	-0.3	0.4	0.7	0.0
-1.0	-0.7	-0.8	-0.4	-0.4	0.3	0.2	0.7	-0.3
-0.6	-0.8	-0.3	-0.5	0.0	-0.1	0.5	0.8	-0.2
-0.7	-0.4	-0.5	-0.1	-0.2	0.3	0.2	0.7	-1.1
0.0	-0.5	0.0	-0.2	0.3	0.1	0.7	-0.5	
-0.3	0.3	-0.1	0.3	0.1	0.5	0.6	-0.8	
0.4	0.2	0.5	0.2	0.7	0.6	-0.9		
0.7	0.7	0.8	0.7	-0.5	-0.8			
0.0	-0.3	-0.2	-1.1			-		

< at HFP with fixed temperature, T/H off >

1.9 1.7 1.7 1.1 1.0 0.1 0.1 -0.3 -1.3 1.7 1.4 0.5 0.6 1.9 1.3 -0.1 -0.3 -1.6 1.4 0.2 1.7 1.5 0.9 0.1 -0.2 0.7 -1.4 1.1 1.3 0.9 0.9 0.4 0.3 -0.3 -0.1 -1.9 1.0 0.5 0.7 0.4 0.4 -0.1 0.0 -1.3 0.6 0.1 0.3 -0.1 -0.1 -0.3 0.1 -1.6 -0.1 -0.3 0.0 -0.3 0.1 0.1 -1.6 -0.3 -0.2 -0.1 -1.3 -1.6 -0.3 -1.6 -1.3 -1.4 -1.9

< at HFP with T/H on >

X As the results, nTRACER-RENUS system with N2R can give very reliable solution with leakage corrections such as LFM+PAT !

□ 1D axial SA problem(A0 type)

C	ase	nTRACER (reference)	$k_{e\!f\!f}$	Δρ (pcm)	P.RMS (%)
	10 ppm	1.18809	1.18805	-3	1.58
Boron Variation (Power : 100%)	500 ppm	1.09018	1.09007	-9	0.96
(10wei : 100/0)	1200 ppm	0.97728	0.97717	-12	P.RMS (%) 1.58 0.96 1.17 0.69 0.49 0.86 0.96 1.47
	HZP	1.09984	1.09929	-45	0.69
	25 %	1.09767	1.09723	-37	0.49
Power Variation (Boron : 500npm)	75 %	1.09276	1.09261	-13	0.86
(Boron : Sooppin)	100 %	1.09018	1.09007	-9	P.RMS (%) 1.58 0.96 1.17 0.69 0.49 0.86 0.96 1.47
	150 %	1.08451	1.08456	4	1.47

- There are different MTC due to boron concentration and Doppler broadening effect.
- However, reactivity and power error are very small !

T/H Feedback Test

• Axial power distribution

: Except bottom side, Axial power error in both two variation cases is within 2%.

< Boron variation >

< Power variation >

※ As the results, the system with N2R works well for T/H feedback although it uses homogenized GCs, not heterogeneous data like nTRACER.

Depletion Test

□ Single assembly

- Maximum error : 97 pcm at 17 MWD/kgHM
- Reactivity error is getting bigger and smaller after maximum point.
- It comes from different depletion module between two codes.

SNURPL

Depletion Test

D 2D Checkerboard

- Maximum error : 148 pcm at 22 MWD/kgHM
- Reactivity error is fluctuating, power sharing error is getting smaller and steady.

X As the results, the system with N2R can perform depletion calculation with good accuracy !

Conclusions and Future work

\Box Development of N2R \rightarrow Establishment of nTRACER-RENUS system

- □ Results of the system with N2R
 - Apply leakage correction such as LFM with PAT
 - Confirm MTC and Doppler broadening effect
 - Perform depletion calculation
 - \rightarrow It has great reliability for a core analysis !

Future work

- Improvement of T/H feedback and depletion results
- The performance assessment through a core-follow calculation

Question?

