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1. Introduction 

 

During transient occurrences in nuclear power plant 

(NPP), operators analyze the trend of several parameters 

indicated by measuring instruments in the main control 

room (MCR). However, it is not easy for operators to 

predict the transients scenarios of the NPP through 

information acquired from various measuring 

instruments [1-2]. If a transient occurs in an NPP, 

operators can make wrong decisions and actions, 

thereby leading to serious accidents. The TMI accident 

is one of the examples. For this reason, many countries 

are conducting researches on the operator support 

systems of NPPs [3]. 

In this study, we predicted the core uncovery time, 

the time that core exist temperature (CET) exceeds 

1200o F , reactor vessel (RV) failure time and 

containment failure time by using the cascaded support 

vector regression (SVR) model. The proposed 

algorithms were trained and verified using the 

simulation data of MAAP code for the optimized power 

rector (OPR1000) [4]. 

 

2. Prediction of transient scenarios using AI model 

 

A new support vector machine (SVM) model based on 

serial connection, termed cascaded SVM (CSVM), is 

proposed in this study. It contains two or more stages 

where each stage corresponds to a single-stage SVM 

module [5]. Fig. 1 shows the architecture of the CSVM 

model.  
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Fig. 1. Architecture of the CSVM model 

 

2.1. Cascaded SVR (CSVR) model 

 

SVM is a robust learning algorithm used for 

classification or for regression. SVM can handle and 

support both regression and classification tasks. 

Let a break size data set be expressed in the form 
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ix  is the input vector for 

an SVR model. The SVR model output is expressed as 
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The function (x)i  is expressed in the feature space. 

The input vector x  is mapped into vector ( )x  of a 

high dimensional kernel-induced feature space. To 

estimate the break size; w  is the weight vector; b  is 

called bias of the support vectors [7]. Here, it is very 

important to find the optimal values of w  and  b . 

Through the use of kernel, an input space of data can be 

mapped into high dimensional kernel feature space.  

To construct an SV machine for real-valued functions, 

we use the  - insensitive loss function: 
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In traditional SVR, in order to solve the quadratic 

optimization problem with these constraints, we can find 

the Lagrange function. The optimal problem can be 

resolved by Lagrange function, which is 
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The constraints are as follows: 
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The constraints on break size can’t always be 

satisfied without error and it is necessary to introduce 

nonnegative slack variables 
i   and *

i . Fig. 2 shows 

the  -insensitivity and slack variables 
i  and *

i  for 

the SVR model [8]. 
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Fig. 2.  -insensitivity and slack variables  

i
  and  

i   for the SVR 

model 

 

Finally, the regression function of Eq. (1) becomes 
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where i  is some real values and ( , )iK x x  is a kernel 

function. The training set that correspond to nonzero i  

is called the support vectors. The coefficient i  is 

expressed by the Lagrange multipliers i  and *

i . The 

radial basis function (RBF) is the most often used to the 

nonlinear regression. Since the RBF with a Gaussian 

kernel produces the same type of decision rules that is 

produced by the SV machine [8]. Therefore, in this 

study, RBF was used. 
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The genetic algorithms (GA) are the most often used 

to solve optimization problems with multiple objectives. 

However, the GA requires much computational time and 

cost if there are many parameters involved. In this study, 

the optimal input values of SVM parameters are 

obtained by using GA. Then these optimized parameters 

are used to construct the SVM model for estimation [9]. 

In this study, a fitness function is proposed as follows: 
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where 1μ  and 2μ  are weighting coefficient, and 1E  and 

2E  denote the root-mean-square (RMS) error and 

maximum absolute error, respectively. 
1E  and 

2E  are 

described as follows: 
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where, N  denotes the number of data points and 
k

y  

and ˆ
k

y  are the target values and estimated values 

respectively. 

 

3. Application to prediction of transient scenarios  

 

Total-time trend information of the measured signals 

was not used. Only short time-integrated information 

was used, that is, for 90 s after reactor trip as follows: 
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where ( )g t  is a specific input signal, st  is scram time 

and t  is integration time span. Among a total of 200 

simulations for each break position, the accident 

simulation data were divided into both 160 training data, 

30 verification data, and 10 test data 

Table 1 summarizes the prediction performance 

results of the hot-leg break. This table shows that the 

RMS errors for training data are approximately 0.24%, 

0.40, 0.22% and 0.16% for the core uncovery, CET 

1200℉, RV failure and containment failure, respectively. 

The RMS errors for the test data are approximately 

0.37%, 0.49, 0.33% and 0.08%. 

Table 2 summarizes the prediction performance 

results of the cold-leg break. This table shows that the 

RMS errors for training data are approximately 31.28%, 

0.90, 0.83% and 0.57% for the core uncovery, CET 

1200℉, RV failure and containment failure, respectively. 

The RMS errors for the test data are approximately 

2.33%, 0.74, 0.80% and 0.56% 

Fig. 3 shows the predicted core uncovery time for 

hot-leg LOCA. Fig. 4 shows the predicted CET 1200℉ 

time for hot-leg LOCA. Fig. 5 shows the predicted RV 

failure time for hot- leg LOCA. Fig. 6 shows the 

predicted containment failure time for hot- leg LOCA. 

Fig. 7 shows the predicted core uncovery time for cold-

leg LOCA. Fig. 8 shows the predicted CET 1200℉ time 

for cold-leg LOCA. Fig. 9 shows the predicted RV 

failure time for cold-leg LOCA. Fig. 10 shows the 

predicted containment failure time for cold- leg LOCA.  

 

 

 

 



 

Table I. Prediction performance of Hot-leg Transient Scenario 

 

Table II. Prediction performance of Cold-leg Transient 

Scenario 

 

 

 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0

500

1000

1500

2000

2500

 Target(training data)

 Predicted(training data)

 Target(verification data)

 Predicted(verification data)

 Error(training data)

 Error(verification data)

Break size(m
2
)

T
im

e(
se

c)

-60

-40

-20

0

20

40

60

R
el

at
iv

e 
er

ro
r(

%
)

Fig. 3. Predicted core uncovery time (Hot-leg) 
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Fig. 4. Predicted CET 1200℉  time (Hot- leg) 
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Fig. 5.  Predicted RV failure time (Hot- leg) 
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Fig. 6. Predicted containment failure time (Hot-leg) 

Transient 

Scenario 

Number 

of SV 

Development data Test data 

RMS 

Error 

(%) 

Max 

Error  

(%) 

RMS 

Error 

(%) 

Max 

Error 

(%) 

Core uncovery 5 0.24 0.82 0.37 0.83 

CET 1200℉ 6 0.40 2.41 0.49 1.38 

RV failure 6 0.22 0.97 0.33 0.77 

CONTMT 

failure 
3 0.16 0.63 0.08 0.13 

Transient 

Scenario 

Number 

of SV 

Development data Test data 

RMS 

Error 

(%) 

Max 

Error 

 (%) 

RMS 

Error 

(%) 

Max 

Error 

(%) 

Core uncovery 6 31.28 353.01 2.33 4.60 

CET 1200℉ 3 0.90 3.56 0.74 1.42 

RV failure 3 0.83 3.80 0.80 1.54 

CONTMT 

failure 
2 0.57 1.88 056 1.34 
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Fig. 7. Predicted core uncovery time (Cold- leg) 
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Fig. 8. Predicted  CET1200℉  time (Cold-leg) 
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Fig. 9. Predicted RV failure time (Cold-leg) 
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Fig. 10. Predicted containment failure time (Cold-leg) 

 

4. Conclusion 

 

In this study, we predicted transient scenarios by 

CSVR. The MAAP code was used to describe the 

accident situation and the 13 measured signal data was 

acquired and used. The CSVR model was developed to 

find out the transient scenarios by using short time-

integrated signals after reactor trip. The results show 

that the CSVR models can predict the transient 

scenarios accurately. 
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