

# Modification of the Condensation Heat Transfer Model of the MELCOR code under the Thermal-Hydraulic Conditions of a PWR Containment

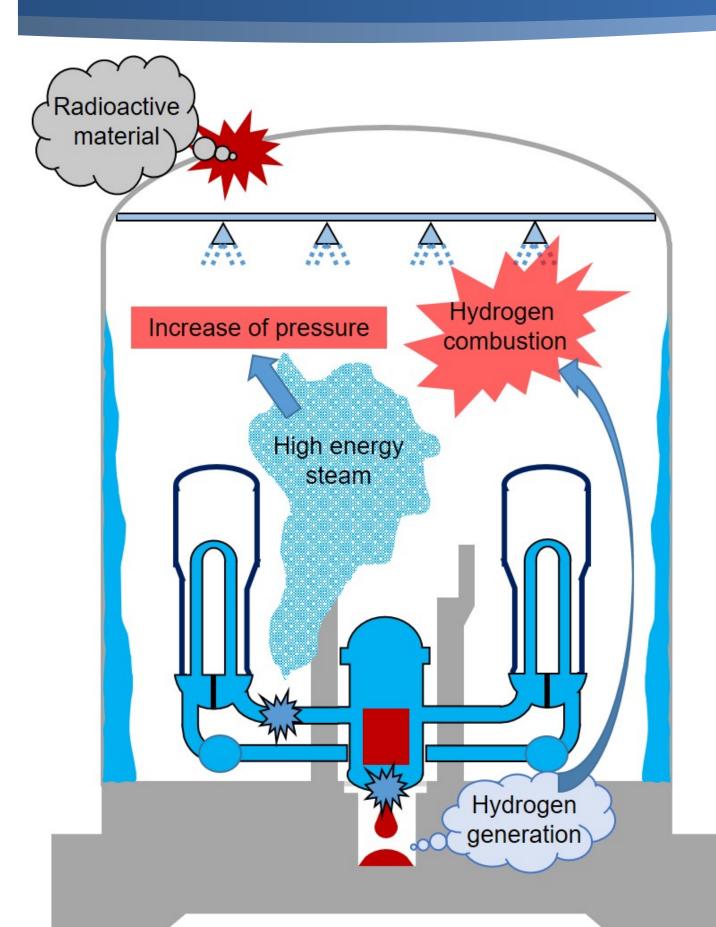
2017. 05. 19.

<sup>a</sup>J.M. Yoo, <sup>a</sup>J.H. Kang, <sup>a</sup>B.J. Yun, <sup>b</sup>S.W. Hong, <sup>a</sup>J.J. Jeong<sup>\*</sup>

<sup>a</sup>School of Mechanical Engineering, Pusan National University(PNU)

BSevere Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute(KAERI)




# Contents

- 1. Introduction
- 2. Description of the models and experiments
  - Condensation models
  - Selected experiments for model assessment
- 3. Assessment and improvement
  - Assessment results
  - Improvements of the MELCOR model
  - Validation of the improved model
- 4. Summary & conclusion



## Introduction (1)



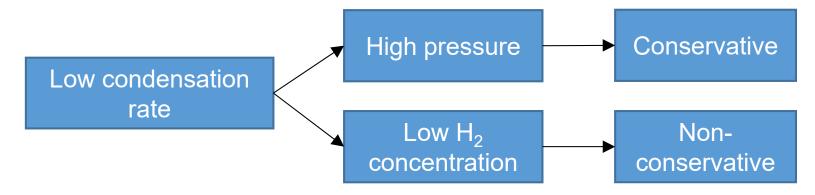


#### Containment

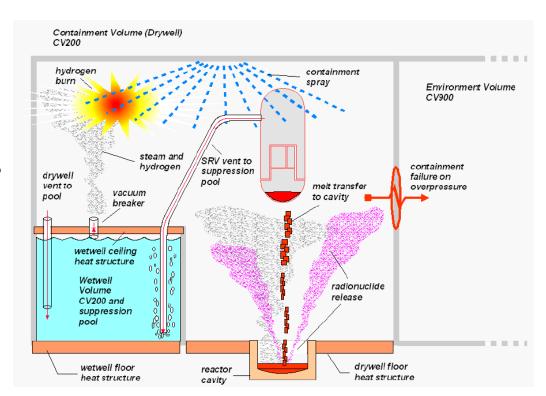
- The last barrier of defense-in-depth
  - Maintenance of the integrity of the containment
- Threats to the containment
  - Increase of pressure
  - Hydrogen combustion

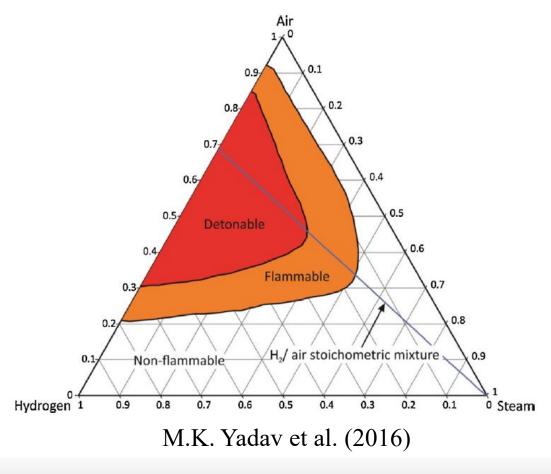
## ■ Importance of the condensation

- Condensation heat transfer on the containment wall and PCCS
  - Contribution to decompression of containment
- Relationship between condensation rate and hydrogen concentration
  - ➤ Condensation rate ↑, hydrogen ratio ↑
  - ➤ Condensation rate ↓, hydrogen ratio ↓


## Introduction (2)




#### ■ MELCOR code


- Fully integrated, engineering-level computer code.
- Primary purpose: severe accident analysis of a LWR.
- Analysis of the whole process of the accident:
  - Thermal-hydraulic behavior, core damage process, behavior of a fission product, hydrogen generation, combustion...
- Conservative condensation model for pressure (= under-prediction of the condensation rate)

#### ■ Problem of the conservative model



- → Conflict between pressure calculation and hydrogen distribution calculation.
- → So, the accurate condensation model is required.









- I. Introduction
- II. Description of the models and experiments
  - Condensation models
  - Selected experiments for model assessment
- III. Assessment and improvement
  - Assessment results
  - Improvements of the MELCOR model
  - Validation of the improved model
- IV. Summary & conclusion

## Condensation models



| Model            | Types                | Correlation                                                                                                                                                                                          | Features                                                                                                                                                                                              |  |  |
|------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MELCOR           | Theoretical          | $h_f \left( T_i - T_w \right) = h_{fg} h_m \rho_v \ln \left( \frac{P_t - P_{s,i}}{P_t - P_{s,b}} \right) + h_{conv} \left( T_b - T_i \right)$ $h_m = Sh \frac{D}{L_c},  Sh = NuSc^{0.33} Pr^{-0.33}$ | <ul> <li>Stagnant film, diffusion only</li> <li>Molar based Fick's law &amp; HMTA*</li> <li>h<sub>f</sub>: film tracking model</li> <li>Wide application range**</li> </ul>                           |  |  |
| Liao<br>(2007)   | Theoretical          | $h_{f}\left(T_{i}-T_{w}\right) = h_{cond}\left(T_{b}^{sat}-T_{i}\right) + h_{conv}\left(T_{b}-T_{i}\right)$ $h_{cond} = Sh\frac{k_{c}}{L_{c}},  k_{c} = condensation \ thermal \ conductivity$       | <ul> <li>- Mass based Fick's law &amp; HMTA</li> <li>- h<sub>f</sub>: Nusselt film theory</li> <li>- Suction and fog formation effect</li> <li>- Wide application range</li> </ul>                    |  |  |
| Dehbi (2015)     | Semi-<br>theoretical | $q'' = h(T_b - T_w)$ $h = 0.185D^{2/3} (\rho_w + \rho_b) \left(\frac{\rho_w - \rho_b}{\mu}\right)^{1/3} \frac{h_{fg}}{(T_b - T_w)} \ln\left(\frac{1 - W_{s,w}}{1 - W_{s,b}}\right)$                  | <ul> <li>Neglect of the convection and film</li> <li>Mass based Fick's law &amp; HMTA</li> <li>Data fitting (six experiments)</li> <li>Natural convection only</li> <li>No local parameter</li> </ul> |  |  |
| Uchida<br>(1965) | Empirical            | $q'' = h\left(T_b - T_w\right)$ $h = 380 \left(\frac{W_s}{1 - W_s}\right)^{0.7}$                                                                                                                     | <ul> <li>Simple form</li> <li>Partial pressure of NC gas: 1atm</li> <li>Natural convection only</li> <li>Conservative result for pressure</li> <li>No local parameter</li> </ul>                      |  |  |

<sup>\*</sup>HMTA: Heat and Mass Transfer Analogy.

<sup>\*\*</sup>Sherwood number correlation is decided by the flow regime.



## Selected experiments for model assessment

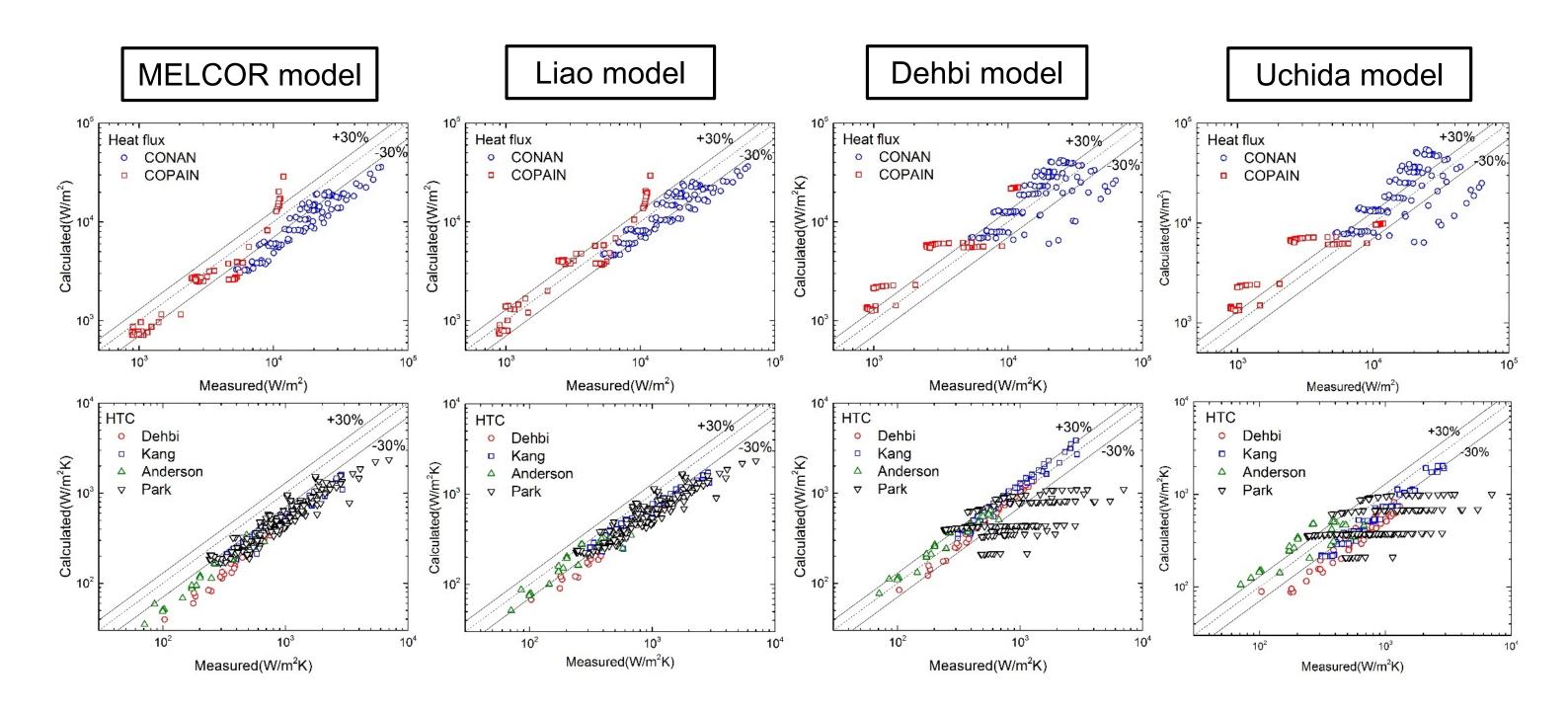


#### ■ Selection criteria

- Thermal-hydraulic conditions similar to those inside the containment during accidents
  - > Pressure: 1.0-5.0 bar, air mass fraction: 0.1-0.9, superheated-saturated steam, natural-forced convection
- External surface condensation on a containment wall and PCCS
  - Vertical plate: COPAIN, CONAN, Park, Anderson
  - Vertical pipe: Dehbi, Kang

| Experiment (geometry) | Air mass fraction | Pressure<br>[bar] | Steam condition [K] | Wall subcooling<br>[K] | Flow condition     | Number of data sets (points) |
|-----------------------|-------------------|-------------------|---------------------|------------------------|--------------------|------------------------------|
| COPAIN (plate)        | 0.49-0.87         | 1.0-4.0           | 7-10                | 14-45                  | Natural-<br>Forced | 6 (68)                       |
| CONAN (plate)         | 0.13-0.72         | 1.0               |                     | 40-45                  | Mixed              | 10 (80)                      |
| Park<br>(plate)       | 0.20-0.70         | 1.0               |                     | 20-50                  | Natural-<br>Forced | 16 (160)                     |
| Anderson (plate)      | 0.40-0.86         | 1.0-3.0           | Saturated steam     | 10-60                  | Natural            | 32 (32)                      |
| Dehbi<br>(pipe)       | 0.25-0.89         | 1.5-4.5           |                     | 10-50                  | Natural            | 42 (42)                      |
| Kang (pipe)           | 0.1-0.7           | 1.0-4.0           |                     | 10-50                  | Natural            | 52 (52)                      |






- I. Introduction
- II. Description of the models and experiments
  - Condensation models
  - Selected experiments for model assessment
- III. Assessment and improvement of the models
  - Assessment results
  - Improvements of the MELCOR model
  - Validation of the improved model
- IV. Summary & conclusion

## Assessment results (1)



## ■ Calculation vs experiment





# Assessment results (2)



Accuracy

### Quantitative analysis

- Accuracy
  - Mean relative error (MRE)

$$MRE = \frac{\sum_{i}^{n} \left| \frac{C_{i} - M_{i}}{M_{i}} \right|}{n}$$

Standard deviation (SD)

$$SD = \sqrt{\frac{\sum_{i}^{n} \left(\frac{C_{i} - M_{i}}{M_{i}}\right)^{2}}{n - 1}}$$



To find a linear fitting line,  $C_i = aM_i + b$ using a least-square approach

Precision

$$f(a,b) = \sum (aM_i + b - C_i)^2$$

Deviation from the fitted line (DFL)

$$DFL = \frac{1}{n} \sqrt{\sum_{i}^{n} \left(aM_{i} + b - C_{i}\right)^{2}}$$

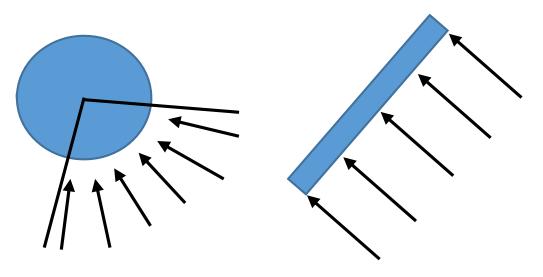
|               |         |           | Mean relative | Standard | Linear fitting |              | Deviation from  |
|---------------|---------|-----------|---------------|----------|----------------|--------------|-----------------|
| Selected! Mod |         | Iodel     | error (%)     |          | Slope, a       | Intercept, b | the fitted line |
| MELO          | MEI COD | Heat flux | 34.7          | 39.2     | 0.54           | 1615.8       | 265.7           |
|               | WIELCOK | HTC       | 46.6          | 47.9     | 0.43           | 80.2         | 7.61            |
|               | Liao    | Heat flux | 28.9          | 35.3     | 0.62           | 2957.8       | 319.9           |
|               | Liao    | HTC       | 31.0          | 33.9     | 0.47           | 163.1        | 10.12           |
| Dehbi         | Dahhi   | Heat flux | 51.4          | 63.3     | 0.69           | 6510.3       | 681.4           |
|               | Denoi   | HTC       | 32.4          | 39.6     | 0.33           | 350.2        | 25.46           |
|               | Uchida  | Heat flux | 56.2          | 71.7     | 0.76           | 6139.0       | 877.1           |
|               | UCIIIda | HTC       | 43.3          | 47.2     | 0.23           | 285.17       | 14.40           |

 $^*C_i$ : calculated value  $M_i$ : measured value



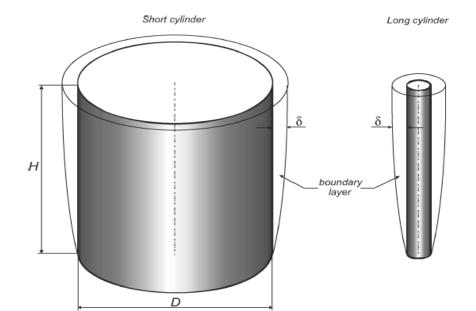
# Improvements of the MELCOR model (1)




#### **■** Curvature effect

Comparison of the MRE between vertical pipe and vertical plate.

|     | Pipe | Plate |
|-----|------|-------|
| MRE | 50 % | 35 %  |




The presence of effects depending on the shape.



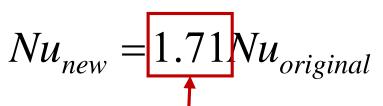


- Increase of the heat and mass transfer
- The larger L/D, the greater the curvature effect
- Dehbi: L/D = 92, Kang: L/D = 62



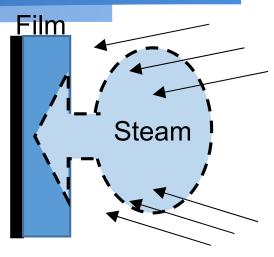
→ Application of the factor suggested by Popiel (2008) under natural convection condition

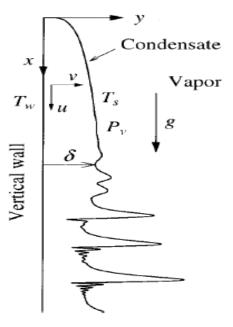
$$Nu_{tube} = Nu_{plate} \times \left(1 + 0.3\left(\sqrt{32}Gr^{-1/4}\frac{L}{D}\right)\right)^{0.909}$$

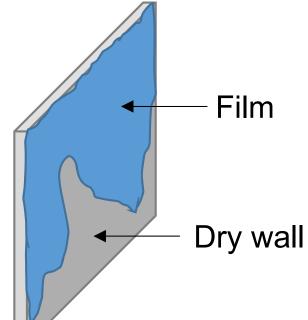

✓ MRE of the pipe:  $50 \% \rightarrow 40 \%$ 

# Improvements of the MELCOR model (2)




## ■ Multiplier


- Under-prediction of MELCOR model
- → Adoption of the multiplier obtained through the data fitting




### Estimated physical meaning of the multiplier

- > Suction
  - ✓ Phase change (Steam → Water): large volume change
  - ✓ This leads to the mixture gas being drawn near the film.
  - ✓ Enhancement of the heat and mass transfer
- > Film waviness
  - ✓ Increase of the interfacial area
  - ✓ Thinning of the film thickness
  - ✓ Enhancement of the heat and mass transfer
- Change of the film coverage rate
  - ✓ Formation of the dry wall due to the interface friction and NCGs
  - ✓ Drop-wise condensation
  - ✓ Increase of condensation rate

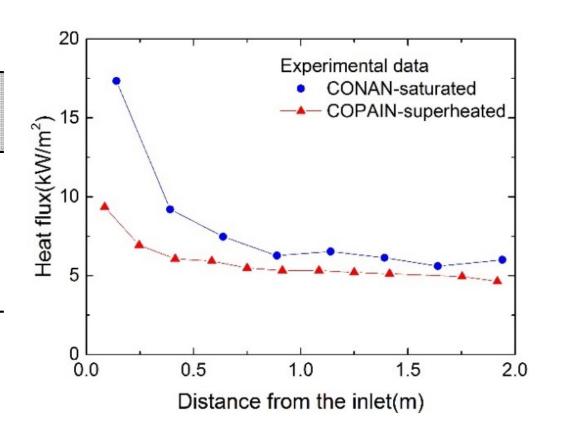








# Improvements of the MELCOR model (3)




## Superheated steam effect

- The absence of model for condensation of the superheated steam in MELCOR
  - Degradation of the condensation rate by superheated steam which needs to energy and time to cool down with saturated steam

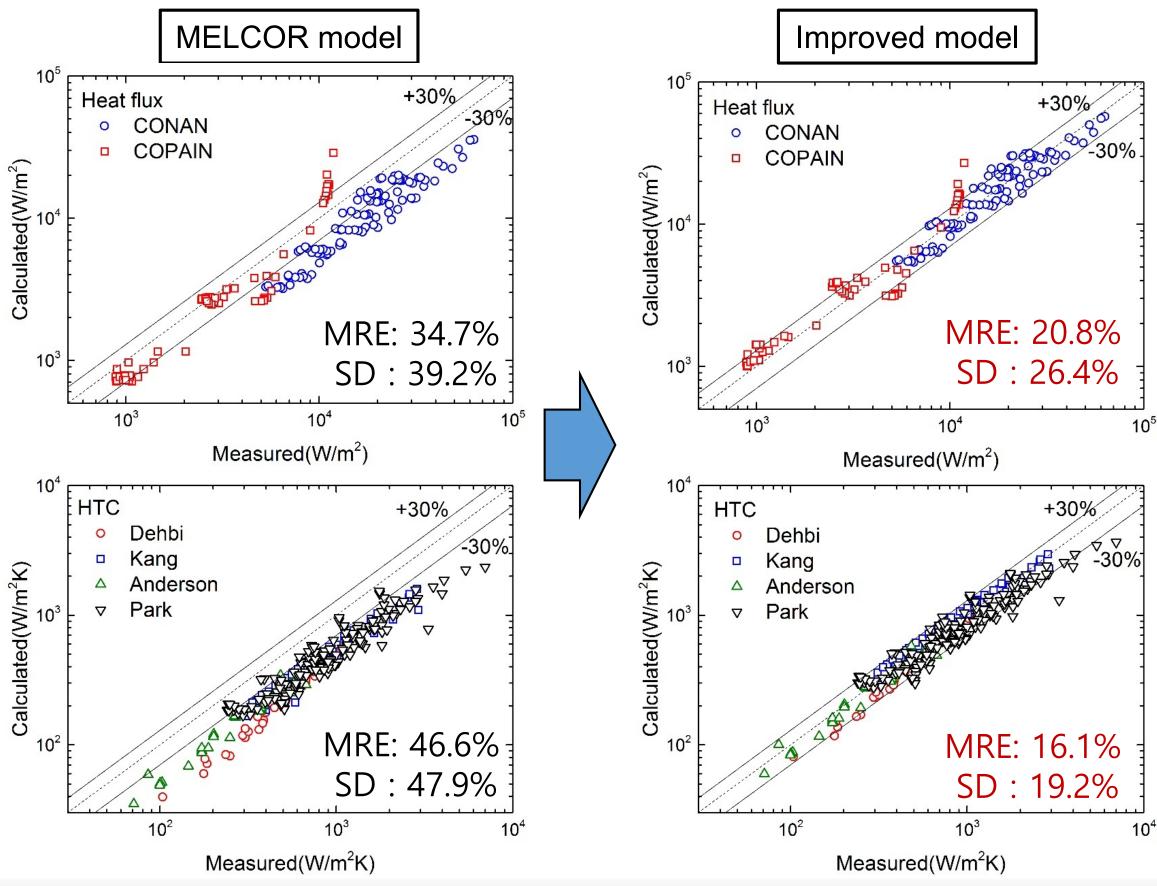
#### <Example of the superheated steam effect>

| Test                 | P<br>[bar] | Air mass fraction | V <sub>in</sub> [m/s] | T <sub>in</sub> [°C] | $\Delta T_{sup}$ | T <sub>wall</sub><br>[K] | Flow regime      |
|----------------------|------------|-------------------|-----------------------|----------------------|------------------|--------------------------|------------------|
| COPAIN<br>P0441      | 1.0        | 0.77              | 3.0                   | 80.0                 | 8.4              | 307.4                    | Mixed<br>Laminar |
| CONAN<br>P10-T30-V25 | 1.0        | 0.72              | 2.6                   | 75.6                 | 0.0              | 309.5                    | Mixed<br>Laminar |



## → Adoption of the degradation factor

(application range:  $\Delta T_{sup} = \sim 10$ K)


$$h_{f}\left(T_{i}-T_{w}\right) = h_{f}\left(h_{m}\right)_{v} \ln\left(\frac{P_{t}-P_{s,i}}{P_{t}-P_{s,b}}\right) + h_{conv}\left(T_{b}\right) - T_{i}$$

$$h_{m} = Sh\frac{D}{L_{c}} \longrightarrow Sh_{new} = f\left(\Delta T_{sup}\right)Sh_{original}, \quad f\left(\Delta T_{sup}\right) = \frac{1}{1+0.0032\Delta T_{sup}^{2.4214}}$$



## Validation of the improved model







## Summary & conclusion



- The assessment of the condensation heat transfer models
  - Models: MELCOR, Liao, Dehbi and Uchida.
  - Assessment results
    - ✓ MELCOR model consistently under-predicted most of experimental data about 40%.
    - ✓ The accuracy and precision of the Uchida and Dehbi model were not good.
    - ✓ The accuracy of the Liao model was relatively good, but the precision was worse than the MELCOR model.
  - → The MELCOR model was chosen as the base model for improvement.
- Improved MELCOR model shows good agreements with most of experimental data (mean relative error 18 %).
  - > Improvements: curvature effect, multiplier and superheated steam effect
- The improved MELCOR model can be applied to in-containment thermalhydraulics for safety analysis, PCCS design, and accident management.







