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1. Introduction 

 
Being a safety-critical system, safety is extremely 

important for any nuclear power plant (NPP). Therefore, 

to maintain the safety of NPPs at an acceptable level, 

preventive measures are necessary to deal with potential 

issues. During plant operation, faults and failures can 

occur in sensors, equipment, and processes which can 

have impact on the performance of the plant. These 

faults are more prominent in aged NPPs because of 

their vulnerability to aging-related faults [1]. Hence 

there is need to monitor the status of the plant during 

operation. To do this, fault detection and diagnosis 

(FDD) techniques are developed and used in NPPs. 

FDD is the process of detecting and identifying 

unexpected behavior in a system. One of these 

techniques is data-driven methods, which comprises of 

artificial neural network (ANN), multivariate state 

estimation technique (MSET), principal component 

analysis (PCA), and autoassociative kernel regression 

(AAKR) [2]. However, the possibility and applicability 

of the deep learning – the current trend in the field of 

machine learning, to FDD of NPPs is not yet explored. 

Therefore, this work seeks to propose and apply deep 

learning techniques to FDD of NPPs. Deep learning 

originated from artificial neural network, and it is a 

branch of machine learning algorithms that use a 

cascade of many layers of non-linear processing units 

for feature extraction and transformation. It based on a 

set of algorithms that attempt to model/learn high level 

abstractions and hierarchy representations in data. There 

are various deep learning architectures, which include 

Restricted Boltzmann Machine (RBM) based deep 

belief network (DBN), Convolutional Neural Network 

(CNN), deep Auto-encoders, and Recurrent Neural 

Network (RNN). Recently, deep learning has been 

successfully adopted in various areas such as computer 

vision, automatic speech recognition, natural language 

processing, audio recognition and bioinformatics [3, 4], 

where they have been shown to produce state-of-the-art 

results on various tasks. 

To verify the applicability of the proposed deep 

learning model, we used the NPP simulation data for 

accident detection and identification. The verified 

model showed high performance applicability to FDD 

of NPPs. 

 

2. Methods and Results 

 

In this section the deep learning technique and its 

algorithms used in this work is briefly described. The 

deep learning architecture selected for this work is deep 

belief network (DBN) which is based on the Restricted 

Boltzmann Machine (RBM) pre-training techniques. At 

the end of this section, the results of the application of 

DBN to the FDD of NPPs are presented and discussed. 

 

2.1 Deep Belief Network Architecture 

 

Deep belief networks is a deep neural network that 

can be constructed by stacking multiple RBMs, where 

the output of the lth layer (hidden units) is used as the 

input of the (l+1)th layer (visible units). Since DBN 

structure is similar to the stacked network of the RBM 

[5], it is necessary to briefly describe the RBM 

techniques. The RBM model is as shown in Fig. 1, and 

it consists of two layers, namely visible layer and 

hidden layer. RBMs are undirected probabilistic 

graphical models containing a layer of observable 

variables and a single layer of latent variables. RBMs 

may be stacked (one on top of the other) to form deeper 

models. As noted by its name, the connections between 

the nodes/neurons within each RBM layer (visible layer, 

v or hidden layer, h) are restricted, that is, it is a 

bipartite graph with no connections permitted between 

any variables in the visible layer or between any units in 

the hidden layer. Both the visible and hidden layers 

have their respective biases Ai and Bj as shown in Fig. 1. 

DBN employs a multilayered architecture which 

consists of one visible layer and multiple hidden layers. 

The visible layer of a DBN accepts the input data and 

transfers the data to the hidden layers in order to 

complete the learning process [6]. An example of DBN 

structure that consists of four (4) stacked RBMs is 

shown in Fig. 2. Each successive layer in the DBN 

structure follows the same transformation concept and 

passes the regularity throughout the DBN architecture 

[5]. 

 
Fig. 1. Structure of a restricted Boltzmann machine. 

 

DBN can be trained in a greedy layer-wise 

unsupervised way without the label data using RBM 

training techniques. After pre-training, the parameters 

of this deep architecture can then be further fine-tuned 

with respect to labels of the training data. 
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Fig. 2. An architecture of deep belief network. 

 

An RBM is an energy-based function and a special 

type of Markov random field, which can be trained 

through contrastive divergence using Gibbs sampling. 

Given an RBM model shown in Fig.1 with m number 

of visible (v) units and n number of hidden (h) units and 

parameters         , the energy function of joint 

configuration is given as [6] 
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The joint distribution over all the units is calculated 

based on the energy function as 
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where the denominator of eqn.(2) is a normalization 

factor. From eqns. (1) and (2), the procedure for 

training an RBM is developed. The synaptic weights 

between the visible and hidden layer of the RBM can be 

determined iteratively during an RBM training as 

follows: 

For a given training data, the states of neurons or 

neuron activation probabilities in the RBM hidden layer 

are determined through transforming the states of 

neurons in the visible layer with corresponding synaptic 

weights and the biases of hidden layer neurons with a 

conditional probability distribution function 
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where                is a sigmoid activation 

function. We then compute the positive phase, 〈    〉. 

The visible layer is then reconstructed by transforming 

the states of neurons in the hidden layer with 

corresponding synaptic weights and the biases of visible 

layer with a conditional probability distribution function 

           (   ∑     

 

   

)                                  

The results of the reconstruction of the visible units are 

again used to determine the neuron activation 

probability of the hidden units using eqn. (3), and then 

compute the negative phase, 〈    〉. 

Each weight     is then updated using 

      〈    〉     〈    〉                                       

We then repeatedly update each weights using eqn. (5) 

for every training example until a specified number of 

epochs is reached. 

The above described procedures are applied to each 

RBM in the DBN. After training all the RBMs in an 

unsupervised manner using only the data inputs, the 

DBN is then fine-tuning using the training data with 

output label examples in a supervised manner. 

 
Fig. 3. Proposed deep learning model framework for fault detection and diagnosis of NPP.



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 18-19, 2017 

 

 
2.2 Application of DBN to FDD of NPPs 

 

In order to demonstrate the applicability of deep 

learning to FDD in NPP, we first developed a model 

framework shown in Fig. 3. As shown in Fig. 3, the 

training and test data for the model is collected from the 

NPP during plant operation which is used to train the 

model off-line. After the model is built, trained and 

tested, it can now be applied to NPP for on-line 

monitoring to monitor plant condition and alert the 

operator through alarm if a fault is detected. It is 

important to note that, the regression is used at the 

top/output layer of the DBN in case of predictions and 

inferences while the softmax function (eqn. (6)), is used 

in case of classification during fine-tuning with back-

propagation. The softmax squashed a K-dimensional 

vector x of arbitrary real values to a K-dimensional 

vector p(x) of real values in the range (0, 1) that add up 

to 1. The probability for the jth class given a sample 

input vector x to the output layer and a weighting vector 

w connected to the jth neuron of the output layer is 

calculated as 
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The proposed deep learning model is applied to the 

accidents detection, identification and classification in 

NPPs. The focus of this research work is that, the NPP 

operator should be able to know at every time instance, 

the condition of the NPP. The proposed model should 

be able to tell the operator that the plant condition is 

either normal or not. If the abnormality occurs as a 

result of an accident, the proposed model should be able 

to tell the operator the kind of accident. However, in 

order to achieve this purpose, there is need to train a 

deep learning with all the possible accidents in NPP. 

Having developed the framework, the simulation data 

is collected from plant simulator model. To collect the 

data, several plant simulation conditions are performed. 

Firstly, the data is collected for normal operation 

condition which are fault-free normal data. Then, 

various accident simulation scenarios such as loss of 

coolant accident (LOCA), steam generator tube rupture 

(SGTR), and steam line break (SLB) inside and outside 

of containment (SLB-IC, SLB-OC) building are 

performed and data is collected for each accident 

conditions. The data are collected from the sensors 

variables in the simulator. The variables that are 

sensitive to all the plant conditions are selected. As such, 

23 sensor variables that best described the plant 

conditions are selected for training and testing of the 

model. The selection criteria for the 23 sensor variables 

are as follows: 

 Among any redundant sensor variables, one is 

selected since they all have the same data values. 

Training the model with all the redundant variables 

included may degrade the model performance. 

 For all the accident scenarios simulated, some 

particular sensor variables did not change. That is, 

they remained constant and the accident conditions 

have not impact on them. Those sensor variables 

data are eliminated from the training data. 

A softmax classifier function given in eqn. (6) is used 

at the output layer of the Model for this purpose. The 

number of the neurons at the output of the Deep 

network softmax classifier is equal to the number of 

accident scenarios plus normal condition. That is, with 

23 sensor variables, the deep network will have 23 set 

of inputs vector and 5 set of outputs if the number of 

accident scenarios is 4 plus normal operating condition. 

As described earlier, softmax operates based on 

probability distribution (between 0 & 1) and assigned a 

probability to each of its output based on the input to 

the network. The output that is related to the applied 

input to the network has the highest probability. With 

this approach, the operator will be able to know if the 

accident occur or not and what type of accident it is if 

occurred. 

Having selected the data, the DBN is trained with the 

following parameters: 3 numbers of hidden layers, 100 

numbers of neuron per each hidden layer, learning rate 

of 0.1 with momentum of 0.9, and 10,000 epochs. 

 

2.3 Results 

 

For the five plant conditions simulated and learned 

by the proposed deep learning model, the obtained 

accuracy after built, trained, and tested the model, for 

each of the plant conditions is shown in Table I. The 

model was able to classify a set of data points of 23 

sensor variables, and detected the plant conditions for 

all the data except in the case of STGR, which has the 

accuracy of 93.75%. The overall accuracy of the model 

is obtained to be 98.9%, with error rate of 1.1%. 

Table I: Classification Accuracy 

Plant 

condition 
Normal LOCA SGTR 

SLB-

IC 

SLB-

OC 

Accuracy 

(%) 
100 100 93.75 100 100 

Table II: Confusion Matrix 

 
Predicted 

Normal LOCA SGTR 
SLB-

IC 

SLB-

OC 

A
ct

u
al

 C
la

ss
 Normal 25 0 0 0 0 

LOCA 0 16 0 0 0 

SGTR 1 0 15 0 0 

SLB-

IC 
0 0 0 16 0 

SLB-

OC 
0 0 0 0 16 

 

Table II shows the confusion matrix for the 89 

samples of the data points associated with the five plant 

conditions which allows visualization of the 

performance of the developed deep learning model. All 
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the correct predictions are located in the diagonal of the 

matrix, so it is easy to visually inspect the matrix for 

errors, since they are represented by values outside the 

diagonal. As can be seen on the matrix, out of the 16 

actual samples of the data points corrupted as a result of 

the SGTR accident, the model predicted that one is 

normal, which is the only error in the classification of 

the model. We can see that the model was able to 

distinguish between the learned plant conditions pretty 

well. 

The probability distributions for each class of the 

plant conditions are shown in Fig. 4. All the plant 

conditions are 100% predicted except in one of the 

cases of SGTR where the classified output of the model 

erroneously predicted normal with probability of 51.1% 

instead of SGTR accident in which the model assigned 

a probability of 48.9%. 

 

  

  

 
 

Fig. 4. Plot of probabilities predicted for each class of the 

plant conditions. 

 

3. Conclusions 

 

Several data-driven methods has been developed and 

applied to detect faults and monitor the NPPs sensors 

and equipment. However, the applicability of deep 

learning, which is the current trend in the field of 

machine learning, has not been explored. In this work, 

we proposed, showed, demonstrated, and verified the 

deep learning architecture for fault detection and 

diagnosis of NPPs. The selected architecture in this 

work is deep belief network which is based on the 

restricted Boltzmann machine. To verify the proposed 

model, NPP simulation data is collected and used to 

train the model. Several plant accident simulations with 

normal operation are performed, and data is collected 

for each plant conditions. The proposed model gave the 

overall performance detection and classification 

accuracy of 98.9%, with error rate of 1.1% which is 

enough to monitor the status of the plant condition. 

Conclusively, the proposed deep learning techniques 

in this work shows that the deep learning can 

effectively be used to monitor and detect the plant 

condition at every point in time in NPPs. One of the 

major advantages of this deep learning technique is that, 

it can be used to model highly complicated and 

complex non-linear feature with high level of 

abstractions, which is good for a complex systems like 

NPPs. The further study of this research and its future 

direction is to extend the deep learning applications to 

time-series data as well as to verify the applicability of 

other deep learning techniques, compare their results 

with each other and with the current data-driven 

techniques, and select the best model for fault detection 

and diagnosis of NPPs. In order to achieve this, two 

major future directions are defined: 

 The development of the time-series recurrent neural 

network applications to FDD of NPPs. 

 The development of the integrated clustering 

algorithms with deep learning techniques for robust 

plant fault detection, diagnosis and prognosis.  
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