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1. Introduction 

Many areas in nuclear engineering require the 

accurate solutions of the radiation transport equations 

for complicated geometrical problems. The treatment of 

the complicated geometries using deterministic methods 

requires the use of unstructured meshes such as 

tetrahedral meshes. Recently, there have been 

significant efforts to devise the accurate spatial 

discretization methods for the multi-group Boltzmann 

transport equation in the complicated geometrical 

problems [1]. For example, the discontinuous finite 

elements method (DFEM) was implemented in Multi-

group Unstructured geometry SN Transport code 

(MUST) and new sub-cell balance methods with linear 

discontinuous expansion were developed and 

implemented in the code MUST
 
[2].  

It is well known that the iteration solutions of the 

transport equations converge very slowly in high 

scattering dominant regions. Therefore, there have been 

lots of research works to develop acceleration methods 

to reduce computing time. One of them, DSA (Diffusion 

Synthetic Acceleration) is a very powerful method to 

accelerate the convergence of the SI (source iteration) 

method. However, the development of an efficient DSA 

is a critical issue in the numerical methods for solving 

the transport equation for the complicated geometries. 

The present work is aimed at developing and 

implementing the DSA equations for the subcell balance 

method LDEM-SCB(1) in unstructured tetrahedral 

meshes used in the MUST code and analyzing it for 3D 

problem. In this work, the discretized DSA equations 

are developed by consistently discretizing the 

continuous diffusion equation with LDEM-SCB(1). 

2. Methods and Results 

2.1. Derivation of the Continuous DSA Equations 

It starts by describing diffusion synthetic acceleration 

(DSA) applied to an analytic transport problem with one 

energy group. Without acceleration, the source iteration 

procedure for the transport equation with isotropic 

scattering can be described by 
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where  and   represent the angular flux and scalar 

flux, respectively, and the iterative index for the 

source iteration. 

The SI scheme converges very slowly in high 

scattering dominant and optically thick region problems. 

To derive the DSA equations, taking zeroth and first 

angular moments of Eq. (1) given by 
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where the angular moments are defined by 
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In Eq. (3), all the iteration indices except for 
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changed into ( +1) to obtain the diffusion equation for 

acceleration [3], which gives 
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The subtraction of Eq. (3) from Eq. (5) gives the 

following diffusion equations: 
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where the following definitions are given by 
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where )1( lF


is the vector current correction and )1( lf is 

the scalar flux correction. 

After solving the DSA equation, the scalar flux for 

the next iteration is updated by using the equation: 
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2.2 Discretized Form of DSA 

As described in section 1, the discretized form of the 

DSA equation is derived by discretizing the continuous 

diffusion equation (i.e. Eq. (6)) in a consistent manner 

as used in the LDEM-SCB(1). This discretization starts 

with the subcell balance equation of Eq. (6). For 

example, the subcell balance equation of the first 

subcell of a tetrahedron cell ‘k’ is given by 
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where 
)1(, lkq  is the source defined by 
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The use of the Green’s theorem for Eq. (9) after 

dropping the iteration index, for simplicity, gives 
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where k

scf 1
is the average value of the scalar flux 

correction over the first subcell of the present cell ‘k’ 

and k

scV 1
 is volume of the subcell-1. 

Equation (11) can be rewritten by decomposing the 

surface integral into external and interface surface terms 

as follows: 
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where the superscripts ‘ef’ and ‘if’ refer to the external 

and internal faces respectively, and the subscripts in the 

current corrections and vector areas (see Fig. 1 [2]) 

refer to the node and face numbers of the tetrahedron ‘k’. 

For example, efkF ,

2,1


represents the current correction over 

the external subsurface efkA ,

2,1


 in the subcell-1, whereas 

efkA ,

2,1


 represents external face-2 which is opposite to the 

node-2 in the subcell-1 as shown in Fig. 1.   

 

Figure 1: Sub-cell division for LDEM-SCB(1) 

For the external subface efkA ,

2,1


 in the k’th cell, the net 

current correction is decomposed into the partial current 

corrections as follows:  
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are defined by 
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where kf 2,1
is the scalar flux correction over the external 

subface efkA ,

2,1


in the cell ‘k’ and similarly )2,1(

,

kf  
 is the 

scalar flux correction over its external subface efkA ,

,



 


of 

the cell ‘ k  ’ adjacent to the cell ‘ k ’ through subface 
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In Eq. (16), k

pif  represents the scalar flux correction 

at the node ‘i’ of the cell ‘k’. To solve Eqs. (14) and 

(15), we used the barycentric transformation between 

global coordinates  zyx ,,  and local coordinates 

 4321 ,,,  systems. Any linear function  zyxg ,,  that 

efA 2,1

  



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-19, 2017 

 

 
takes the values  4,3,2,1igi

at the nodes of a 

tetrahedron can be represented in terms of the local 

barycentric coordinates as follows: 
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Figure 2: Barycentric coordinates transformation 

With the barycentric transformation, the partial 

current correction over the external subfaces in Eqs. 

(14) and (15) are calculated and substituted in Eq. (13). 

The net current is given by 
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Similarly, the one over an internal subface is given by 
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After representing all the internal and external current 

correction across internal and external faces in terms of 

point scalar flux corrections and substituting them into 

Eq. (12) gives the final subcell-1 balance equation. 
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 The remaining DSA equations for other three 

subcells are derived in the same manners and finally 

they give a set of four DSA equations for one cell ‘k’. 

3. Numerical Test 

The numerical estimation of spectral radius gives an 

insight of the validity of the solution techniques. So, in 

this paper, the spectral radii of our DSA were 

numerically estimated to show the performance for 

various mesh divisions with the following equation: 
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                              (22) 

For all the test problems, the reflective boundary 

conditions (BCs) were applied to -x, -y, and –z external 

faces while vacuum BCs were applied to all other 

external faces. A uniform external source of 10 #cm
-

3
sec

-1
 is distributed in the region. The scattering ratio c 

is 0.9999 and the convergence criterion for transport 

sweep is 1.0×10
-8

 and for DSA is 1.0×10
-5

 for all the 

test problems. 

The first test problem is comprised of a 6×6×6 grid of 

unit boxes. Each unit box has 2.0cm, 1.0cm and 8.0cm 

sides along x, y and z-axis directions, respectively. Each 

unit box is divided in six tetrahedrons of equal volume 

for all the problems. 
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Figure 3: Spectral radius as a function of logarithmic total XS 

In Fig. 3, the numerically estimated spectral radius is 

plotted against the logarithmic total cross section. It 

shows that over a wide range of total cross section, the 

solution is converged and the maximum spectral radius 

is 0.4317 at σt=2.7183. 

The second test problem comprised of a 10×10×10 

grid of unit boxes. Each unit box has 2.0cm, 2.0cm and 

2.0cm sides along x, y and z-axis directions, 

respectively.  
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Figure 4: Spectral radius as a function of mesh size (mfp) 

In Fig. 4, spectral radius is plotted as a function of 

mesh size expressed in terms of mean free path (mfp). 

Fig.4 shows that DSA is converged over a wide range of 

total XS and the spectral radii are less than 0.42. 

The last test problem was considered to test the DSA 

for various minimum aspect ratios of tetrahedron 

meshes
 
[4]. Minimum aspect ratio ‘αmin’ is defined as the 

ratio of three times the radius of the inscribed circle to 

the radius of circumscribed circle. This problem is 

comprised of 8×8×8 grid of unit boxes. The dimensions 

of each unit box are described for various minimum 

aspect ratios in Table 1. Minimum aspect ratios are 

tabulated in terms of the dimensions of the basic 

elements used. The minimum aspect ratio ranges from 

0.116 to 0.632 for different dimensions of unit box.  

Fig. 5 compares the spectral radii for different DSA 

methods versus minimum aspect ratio. In terms of 

spectral radius, FCDSA (Fully Consistent DSA) showed 

the best performance. Our method showed better 

performance than the other two methods (i.e., WLA 

(Wareing, Larsen and Adams) and M4S (Modified Four 

Steps)). It is also noted that the spectral radius showed 

only a small variation (~0.4) over all the values of min 

aspect ratios, which is similar to FCDSA. 
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 Figure 5: Spectral radius as a function of mini aspect ratio 

Table 1: Minimum Aspect Ratio in terms of Dimensions [4] 

Δx (cm) Δy (cm) Δz (cm) αmin 

1.0 1.0 1.0 0.632 

2.0 2.0 3.0 0.562 

1.0 1.0 2.0 0.487 

2.0 2.0 5.0 0.421 

2.0 1.0 3.0 0.370 

3.0 1.0 3.0 0.327 

2.0 1.0 5.0 0.256 

2.0 1.0 8.0 0.170 

8.0 1.0 10.0 0.116 

4. Summary and Conclusion 

In this study, a DSA scheme was developed for 

LDEM-SCB(1) by consistently discretizing the 

continuous diffusion equation to the derivation used in 

the LDEM-SCB(1). The numerical estimation of 

spectral radius for various test problems showed that 

DSA scheme devised to LDEM-SCB(1) is very 

effective over wide range of mesh size and optical 

thickness. In particular our method was very stable for 

various minimum aspect ratios even if some well-known 

DSA methods showed degraded spectral radii.  This 

property of our DSA makes it more useful over other 

DSA schemes. However, it is found that the number of 

iterations in solving the DSA itself is bit higher and 

becomes slower when the mesh size (in mfp) is in the 

range from 2~5. A detailed study is underway to 

investigate this behaviour and it is hoped that this study 

will reduce the DSA iterations count and make it more 

effective and faster to reduce the computing time. 
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