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1. Introduction

Many areas in nuclear engineering require the
accurate solutions of the radiation transport equations
for complicated geometrical problems. The treatment of
the complicated geometries using deterministic methods
requires the use of unstructured meshes such as
tetrahedral meshes. Recently, there have been
significant efforts to devise the accurate spatial
discretization methods for the multi-group Boltzmann
transport equation in the complicated geometrical
problems [1]. For example, the discontinuous finite
elements method (DFEM) was implemented in Multi-
group Unstructured geometry Sy Transport code
(MUST) and new sub-cell balance methods with linear
discontinuous  expansion were developed and
implemented in the code MUST [2].

It is well known that the iteration solutions of the
transport equations converge very slowly in high
scattering dominant regions. Therefore, there have been
lots of research works to develop acceleration methods
to reduce computing time. One of them, DSA (Diffusion
Synthetic Acceleration) is a very powerful method to
accelerate the convergence of the SI (source iteration)
method. However, the development of an efficient DSA
is a critical issue in the numerical methods for solving
the transport equation for the complicated geometries.
The present work is aimed at developing and
implementing the DSA equations for the subcell balance
method LDEM-SCB(1) in unstructured tetrahedral
meshes used in the MUST code and analyzing it for 3D
problem. In this work, the discretized DSA equations
are developed by consistently discretizing the
continuous diffusion equation with LDEM-SCB(1).

2. Methods and Results
2.1. Derivation of the Continuous DSA Equations

It starts by describing diffusion synthetic acceleration
(DSA) applied to an analytic transport problem with one
energy group. Without acceleration, the source iteration
procedure for the transport equation with isotropic
scattering can be described by
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where W and ¢ represent the angular flux and scalar

flux, respectively, and ¢ the iterative index for the
source iteration.

The SI scheme converges very slowly in high
scattering dominant and optically thick region problems.
To derive the DSA equations, taking zeroth and first
angular moments of Eq. (1) given by
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where the angular moments are defined by
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In Eq. (3), all the iteration indices except for q)(z”i) are
changed into (¢+1) to obtain the diffusion equation for
acceleration [3], which gives
v U +O_¢(1+1) - ¢(1+1) +q
1 t K 0
2

1 I+
Vg + VD
3 ¢ 3007

1 )
)
2 4o, =gq, .

The subtraction of Eq. (3) from Eq. (5) gives the
following diffusion equations:
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where the following definitions are given by
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where F¢*Vis the vector current correction and FUis
the scalar flux correction.

After solving the DSA equation, the scalar flux for
the next iteration is updated by using the equation:

¢(l+1) ¢ f(l+1) (8)
2.2 Discretized Form of DSA

As described in section 1, the discretized form of the
DSA equation is derived by discretizing the continuous
diffusion equation (i.e. Eq. (6)) in a consistent manner
as used in the LDEM-SCB(1). This discretization starts
with the subcell balance equation of Eq. (6). For
example, the subcell balance equation of the first
subcell of a tetrahedron cell ‘%’ is given by
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where qk’(m) is the source defined by
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The use of the Green’s theorem for Eq. (9) after
dropping the iteration index, for simplicity, gives
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where ];5 * is the average value of the scalar flux

correction over the first subcell of the present cell ‘&’
and 7/, is volume of the subcell-1.

Equation (11) can be rewritten by decomposing the
surface integral into external and interface surface terms
as follows:

(ﬁlkz,cff_ lek’ff N ﬁk,qf_ Zk,ef 4 ﬁk,c.’f. Zk,ef)
(Ekzzf A]k21f+Fk Jif Ak1f+Fk Jif Aklf) (12)
+0 f:vcl scl qSClVS]Z‘I’

where the superscripts ‘ef’ and ‘if’ refer to the external
and internal faces respectively, and the subscripts in the
current corrections and vector areas (see Fig. 1 [2])

refer to the node and face numbers of the tetrahedron ‘k’.

For example, f*¢ represents the current correction over
the external subsurface fof in the subcell-1, whereas

;11"'24 represents external face-2 which is opposite to the

node-2 in the subcell-1 as shown in Fig. 1.
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Figure 1: Sub-cell division for LDEM-SCB(1)

For the external subface Zlk’;f in the k’th cell, the net

current correction is decomposed into the partial current
corrections as follows:
ke ke _ Dkef
F A] 2 F; 2 nl A

of |( ke
Alz(Flz nl2l

ke pek(L2)ef
(F]',2 _Fa’,ﬁ' )

| (13)
Ry Ay =24

D kef o +k(1,2)ef i
where Fy and Fy represents the outgoing and
incoming partial current corrections, respectively,

across the external subface 4" are defined by
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where 7k is the scalar flux correction over the external
subface 4" in the cell ‘k’ and similarly fioa is the
scalar flux correction over its external subface ,?12,5;-’; of

the cell ‘%'’ adjacent to the cell ‘%’ through subface
A (= _;15’%) are defined respectively:
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In Eq. (16), . represents the scalar flux correction

at the node ‘i’ of the cell ‘k’. To solve Egs. (14) and
(15), we used the barycentric transformation between
global coordinates (x,y,z) and local coordinates

(&.£,.5,,&,)systems. Any linear function g(x,y,z) that
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takes the wvalues gi(i:1,2,3,4) at the nodes of a

tetrahedron can be represented in terms of the local
barycentric coordinates as follows:
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P (x5, 15,25)

|ﬁ| g Q2
Py(X4,4524) §

B(x,¥,2)

Figure 2: Barycentric coordinates transformation

With the barycentric transformation, the partial
current correction over the external subfaces in Egs.
(14) and (15) are calculated and substituted in Eq. (13).
The net current is given by
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Similarly, the one over an internal subface is given by
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After representing all the internal and external current
correction across internal and external faces in terms of

point scalar flux corrections and substituting them into
Eq. (12) gives the final subcell-1 balance equation.
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The remaining DSA equations for other three

subcells are derived in the same manners and finally
they give a set of four DSA equations for one cell ‘%’
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3. Numerical Test

The numerical estimation of spectral radius gives an
insight of the validity of the solution techniques. So, in
this paper, the spectral radii of our DSA were
numerically estimated to show the performance for
various mesh divisions with the following equation:
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For all the test problems, the reflective boundary
conditions (BCs) were applied to -x, -y, and —z external
faces while vacuum BCs were applied to all other
external faces. A uniform external source of 10 #cm’
*sec” is distributed in the region. The scattering ratio ¢
is 0.9999 and the convergence criterion for transport

sweep is 1.0x10™ and for DSA is 1.0x10” for all the
test problems.

The first test problem is comprised of a 6x6x6 grid of
unit boxes. Each unit box has 2.0cm, 1.0cm and 8.0cm
sides along x, y and z-axis directions, respectively. Each

unit box is divided in six tetrahedrons of equal volume
for all the problems.
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Figure 3: Spectral radius as a function of logarithmic total XS

In Fig. 3, the numerically estimated spectral radius is
plotted against the logarithmic total cross section. It
shows that over a wide range of total cross section, the
solution is converged and the maximum spectral radius
is 0.4317 at 6=2.7183.

The second test problem comprised of a 10x10x10
grid of unit boxes. Each unit box has 2.0cm, 2.0cm and
2.0cm sides along x, y and z-axis directions,
respectively.
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Figure 4: Spectral radius as a function of mesh size (mfp)

In Fig. 4, spectral radius is plotted as a function of
mesh size expressed in terms of mean free path (mfp).
Fig.4 shows that DSA is converged over a wide range of
total XS and the spectral radii are less than 0.42.

The last test problem was considered to test the DSA
for various minimum aspect ratios of tetrahedron
meshes [4]. Minimum aspect ratio ‘e’ is defined as the
ratio of three times the radius of the inscribed circle to
the radius of circumscribed circle. This problem is
comprised of 8x8x8 grid of unit boxes. The dimensions
of each unit box are described for various minimum
aspect ratios in Table 1. Minimum aspect ratios are
tabulated in terms of the dimensions of the basic
elements used. The minimum aspect ratio ranges from
0.116 to 0.632 for different dimensions of unit box.

Fig. 5 compares the spectral radii for different DSA
methods versus minimum aspect ratio. In terms of
spectral radius, FCDSA (Fully Consistent DSA) showed
the best performance. Our method showed better
performance than the other two methods (i.e., WLA
(Wareing, Larsen and Adams) and M4S (Modified Four
Steps)). It is also noted that the spectral radius showed
only a small variation (~0.4) over all the values of min
aspect ratios, which is similar to FCDSA.
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Figure 5: Spectral radius as a function of mini aspect ratio

Table 1: Minimum Aspect Ratio in terms of Dimensions [4]

Ax (cm) Ay (em) Az (em) Cmin
1.0 1.0 1.0 0.632
2.0 2.0 3.0 0.562
1.0 1.0 2.0 0.487
2.0 2.0 5.0 0.421
2.0 1.0 3.0 0.370
3.0 1.0 3.0 0.327
2.0 1.0 5.0 0.256
2.0 1.0 8.0 0.170
8.0 1.0 10.0 0.116

4. Summary and Conclusion

In this study, a DSA scheme was developed for
LDEM-SCB(1) by consistently discretizing the
continuous diffusion equation to the derivation used in
the LDEM-SCB(1). The numerical estimation of
spectral radius for various test problems showed that
DSA scheme devised to LDEM-SCB(1) is very
effective over wide range of mesh size and optical
thickness. In particular our method was very stable for
various minimum aspect ratios even if some well-known
DSA methods showed degraded spectral radii. This
property of our DSA makes it more useful over other
DSA schemes. However, it is found that the number of
iterations in solving the DSA itself is bit higher and
becomes slower when the mesh size (in mfp) is in the
range from 2~5. A detailed study is underway to
investigate this behaviour and it is hoped that this study
will reduce the DSA iterations count and make it more
effective and faster to reduce the computing time.
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