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1. Introduction 

 

For the high-fidelity reactor analysis, a continuous-

energy Monte Carlo (MC) neutron transport code 

requires temperature dependent cross sections. Usually, 

the cross sections are pre-generated as piecewise linear 

functions in energy at fixed temperatures, where the 

temperature dependence of a cross section is treated by 

the SIGMA1 algorithm [1] in the BROADR module of 

NJOY [2]. 

The simplest approach to the treatment of temperature 

dependence of cross sections is interpolation of the pre-

generated cross sections [3]. However, this approach 

requires excessive memory (around 130 GB) to cover 

temperatures from 0K to 3000K. The other approach is 

on-the-fly (OTF) Doppler broadening, which provides 

temperature-effective cross sections during simulation of 

neutron transport. Recently, several OTF methods have 

been proposed [4-7]. 

One of the OTF methods, the windowed multipole 

method [7] shows remarkable performance in terms of 

both memory and computing time. However, for some 

nuclides, resonance parameters are not provided in the 

ENDF database, which makes it impossible to apply the 

windowed multipole method. 

On the other hand, Dean, et al. [4] proposed to apply 

the Gauss-Hermite quadrature (GHQ) to evaluate the 

Doppler broadened cross sections. Compared to the two-

point Gauss-Legendre quadrature (GLQ) algorithm [8] 

and the SIGMA1 algorithm, the GHQ algorithm 

significantly reduces the computing times, while it shows 

oscillatory error (with maximum relative error of 2%) in 

the low energy range (E < 16kT/A) [4,9]. To avoid such 

accuracy degradation, Ref. 9 also applied the SIGMA1 

algorithm to the low energy range, but at the expense of 

computing times. 

In this paper, the GHQ algorithm is refined in two 

aspects. One is that the Doppler broadened cross section 

in the low energy range is estimated by the two variations 

of GHQ (GHQ1 and GHQ2) and the two-point GLQ for 

both accuracy and computational efficiency. The other is 

a refined cross-section table lookup procedure for GHQ 

to reduce computing times. The numerical results show 

that these refinements lead to significantly improved 

performance. 

 

2. Gauss-Hermite Quadrature (GHQ) Algorithm 

for Doppler Broadening 

 

The effective cross section at temperature T can be 

written as [1] : 
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Er is relative incident neutron energy with respect to 

target  E is incident neutron energy  A is the ratio of the 

target mass to the neutron mass  and T0 is the base 

temperature at which the cross section is provided in 

piecewise-linear tabulation. 

It is conventional to split Eq. (1) in two separate parts: 
* *( , ) ( , ) ( , ) ,y T y T y T      (2) 

where * ( , )y T  and * ( , )y T   are defined as: 
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For y ≥ 4, we only need to perform the integration for 
* ( , )y T in Eq. (2), because * ( , )y T    becomes 

negligible. Eq. (3a) is rewritten into a suitable form for 

the Gauss-Hermite quadrature (GHQ) [4 9] using a 

change of variable from x to z x y   as: 
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where 
kz  and 

kw  are the nodes and weights of GHQ on 

an infinite interval  respectively  and N is the quadrature 

order  which is chosen as 16 in this study. Note that for  

y ≥ 4  the lower limit of integration  –y in Eq. (4a)  can 

be approximated as   in  Eq. (4b) without loss of 

significant accuracy  due to the
2ze  function. 

For y < 4, the mismatch of the lower limits of 

integration for * ( , )y T  causes significant errors. 

Furthermore, * ( , )y T    in Eq. (2) is not negligible 

anymore  and thus  it should be also estimated. The 

estimation of * ( , )y T  using GHQ based on a change 

of variable from x to z = x + y could be more erroneous  

due to the fact that the lower limit of integration y cannot 

be approximated as  . Therefore  it requires a special 

treatment in the low energy range (i.e.  y < 4) to retain 

accuracy. For this purpose, three algorithms are 

presented in Section 3.  
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3. Doppler Broadening Algorithms  

in Low Energy Range 

 
In this section, three different Doppler broadening 

algorithms are presented for the low energy range (y < 4). 

 

3.1 GHQ1 algorithm 

 

Similarly to Section 2, GHQ based on a change of 

variable from x to z = x – y is applied to Eq. (1) as: 

 
2

2

2 4 ( )

0

2

02
1

4 ( )

1
( , )  (

               ( ) ( , )(1 ))

1
           ( ( ) ( , )

               (1 )) .k

z

y

y z y

N

k k k

k

y z y

y T dz e
y

z y z y T e

w z y z y T
y

e














 



 

 

  

  







 

 

 
 

(5a) 

 

 
 

(5b) 

 

In the GHQ1 algorithm, * ( , )y T and * ( , )y T   are 

not separately estimated  while the evaluation of the 

exponential function at each GHQ node zk is required. 

It is noted that when zk + y < 0 in Eq. (5b)  the 

quadrature summations are skipped. It will be shown in 

Section 5.1 that the GHQ1 algorithm shows significant 

oscillatory errors in the low energy range  similarly to 

the previous study [4]. 

 

3.2 Two-point GLQ algorithm 

 

For y < 4, the two-point GLQ algorithm [8] is applied 

to perform the integrations in Eqs. (3a,b) to retain 

accuracy. The GLQ algorithm requires evaluations of 

exponential functions for each piecewise linear energy 

grid interval  which take heavy computational burdens  

compared to the GHQ algorithm. In this paper  we use 

two-point GLQ. One can think of a one-point GLQ 

algorithm with merging several piecewise linear energy 

grids to reduce the computational burdens. 

 

3.3 GHQ2 algorithm 

 

GHQ on a semi-infinite interval is applied to Eq. (1) 

as: 
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where 
kx  and 

kw  are the nodes and weights of GHQ on 

a semi-infinite interval  respectively. N  is chosen as 16 

to avoid xk = 0 and maintain accuracy of the effective 

cross section near y = 4. It is noted that  for each node 

kx    one evaluation of the exponential function is 

required. 

4. Refined Cross-Section Table Lookup for GHQ 

 

When we calculate the effective cross section using 

GHQ, cross-section table lookups take significant 

computational burdens, because we need to look up cross 

sections for each GHQ node. For example, 16 times of 

cross section table lookups are required for GHQ of order 

16. 

To reduce the computing times for cross-section table 

lookups, we can use the logarithmic hash-table [10]. On 

top of this basic hash-table, we can narrow the energy 

range for cross section table lookups by updating the 

lower energy bound and the upper energy bound during 

the quadrature summation.  

 
Fig. 1. Energies corresponding to GHQ nodes. 

 

The following is the refined cross section table lookup 

procedure for GHQ using Fig. 1: 

1) Search energy grid indices of E1 and EN using the 

logarithmic hash-table. 

2) Set lower bound and upper bound of energies as 

E1 and EN, respectively, and search for the energy 

grid index of E2. 

3) Update the lower bound energy as E2 and search 

for E3. 

4) Continue update of the lower bound energy to 

narrow the energy range for the next energy grid 

search. 

 

5. Numerical Results 

 

5.1 Doppler Broadening of Total Cross Section of U-238 

 

The total cross section of U-238 at 600K, 900K, and 

1200K is obtained at each energy grid point, where the 

cross section at 293K provided by NJOY is used for 

Doppler broadening. The reference total cross sections 

for these temperatures are obtained from the SIGMA1 

algorithm. The GHQ algorithm is used for Doppler 

broadening for y ≥  4 while three different Doppler 

broadening algorithms (GHQ1, Two-point GLQ, and 

GHQ2) are used for y < 4. Note that, for energy above 1 

MeV or above the resolved resonance energy range, 

Doppler broadening is turned off. In case of U-238, the 

lower bound of the unresolved resonance range is 20 keV.  

Figures 2, 3, and 4 show relative errors in the effective 

total cross sections of U-238 at 600K, 900K, and 1200K, 

respectively. For y < 4, there are oscillatory errors in the 

GHQ1 algorithm, while the relative errors in both two-

point GLQ algorithm and GHQ2 algorithm are almost 

zero. Figure 5 compares computing times for the Doppler 

broadening algorithms for y < 4. In terms of both 

accuracy and computing times, GHQ2 shows the best 

performance for the low energy range. 
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Fig. 2. Relative errors in total cross sections of U238 at 600K 

(relative to SIGMA1). 

 

 

 
Fig. 3. Relative errors in total cross sections of U238 at 900K 

(relative to SIGMA1). 

 

 

 
Fig. 4. Relative errors in total cross sections of U238 at 1200K 

(relative to SIGMA1). 

 

 
Fig. 5. Comparison of computing times for Doppler 

broadening algorithms for y < 4  where computing times are 

measured on Xeon® CPU X5670 @ 2.93 GHz. 

 

5.2 OTF Doppler Broadening in UO2 Pin-Cell Problem 

 

The UO2 pin-cell test problem is shown in Fig. 6. The 

temperatures of all the materials are set as 600K. We 

perform MC simulation with OTF Doppler broadening 

based on the continuous-energy nuclear data (ENDF/B-

VII.0) at 293K. For Doppler broadening, the GHQ 

algorithm is used for y ≥  4, while the three different 

Doppler broadening algorithms; GHQ1, Two-point GLQ, 

and GHQ2 are used for y < 4. The continuous-energy MC 

simulations are performed by the in-house MC code, 

McBOX [11]. The calculational conditions are 200,000 

histories/cycle, 10 inactive cycles, and 100 active cycles. 

 

 
Fig. 6. UO2 pin-cell test problem containing total 32 isotopes 

at 600K. 

 

Table I compares the multiplication factors and 

computing times of MC simulations using different OTF 

Doppler broadening algorithms. All the multiplication 

factors shown in Table I agree well within 1σ. Both 

“GHQ1/GHQ” algorithm and “GHQ2/GHQ” algorithm 

are 4 times faster than “Two-point GLQ/GHQ” 

algorithm, while they are 6~7 times slower than the 

reference calculation, where the reference calculation 

means that MC simulation by the cross sections pre-

generated by NJOY (SIGMA1 algorithm) at 600K. 
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Table I. Comparisons of keff’s and computing times 

OTF Methods keff  (σ) 
Computing 

Times [sec] 

Ratio of 

Computing Times 

GHQ1/GHQ 
1.22383 

(13.2 pcm) 
234 6.87 

Two-Point 

GLQ/GHQ 

1.22384 

(15.0 pcm) 
875 25.75 

GHQ2/GHQ 
1.22374 

(13.5 pcm) 
221 6.50 

Reference* 
1.22372 

(14.3 pcm) 
34 1.00 

*Reference is obtained from MC simulation by the cross 

sections pre-generated by NJOY (SIGMA1 algorithm) at 

600K. 

 

6. Summary and Conclusions 

 

In this paper, the on-the-fly (OTF) Doppler 

broadening algorithm via Gauss-Hermite quadrature 

(GHQ) is refined. For the low energy range (y < 4), the 

effective cross section is estimated by the GHQ2 

algorithm to improve both accuracy and computational 

efficiency. To further reduce the computing times for 

Doppler broadening, a procedure of cross-section table 

lookups for the GHQ algorithm is also refined. From the 

numerical results, we have shown that the GHQ2 

algorithm removes oscillatory errors in the low energy 

range, which appear in the GHQ1 algorithm, while the 

computing time of the GHQ2 algorithm is much faster 

than that of the two-point GLQ algorithm. 

In conclusion, the “GHQ2/GHQ” algorithm (GHQ2 

for y < 4 and GHQ for y ≥ 4) with the refined cross-

section table lookup procedure can be an efficient and 

accurate OTF Doppler broadening algorithm for MC 

simulations, when the cross section data is piecewise 

linearly tabulated. 
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