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1. Introduction 

 
For the realistic thermal-hydraulic analysis of nuclear 

reactor systems and the Korean regulatory activity, 

MARS (Multi-dimensional Analysis of Reactor Safety) 

code has been developed as a best-estimate code. In 

MARS code, the governing equations are based on the 

two-phase two-field model (continuous liquid and vapor). 

So, the governing equations consist of two phasic 

continuity equations, two phasic momentum equations, 

two phasic energy equations and a continuity equation of 

non-condensable gases. These governing equations are 

discretized using the first-order semi-implicit scheme.  

Furthermore, the existing nuclear system analysis 

codes such as RELAP5, COBRA-TF, TRAC, MARS and 

SPACE use the first-order numerical scheme in both 

space and time discretization. However, the first-order 

scheme is highly diffusive and less accurate due to the 

first order of truncation error. So, the numerical diffusion 

problem which make the gradients to be smooth in the 

regions where the gradients should be high can occur 

during the analysis, which often predicts less 

conservatively than the reality. So, the second-order 

scheme is more accurate than the first-order scheme if 

the same number of meshes are used. Therefore, the first-

order scheme is not always desirable in many 

applications of nuclear system analysis. For instance, 

during an accident condition, the pressure of a reactor 

system can fluctuate dramatically. This may result in the 

peak cladding temperature dramatic increase due to 

strong heat transfer between coolant and structures, since 

quick flashing or condensation may occur which are the 

results of pressure fluctuation [1]. Therefore, the nuclear 

system analysis code needs high predictive capability. 

For this study, the in-house code has been developed 

for application of the higher-order numerical schemes on 

1D thermal-hydraulic system analysis code. Using this 

code, performance of higher-order numerical scheme is 

evaluated in terms of accuracy and stability. 

 

2. Methods & Results 

 

For this study, MARS code will be used as the 

reference code to identify the numerical diffusion 

problem which can arise in the first-order scheme. The 

higher-order scheme will be also tested for the numerical 

diffusion and dispersion problems as well. A single 

phase transient analysis code which is possible to 

calculate in the first-order and the higher-order scheme 

but mimics MARS solver is built in MATLAB 

environment. Fig. 1 shows algorithm of single-phase 

transient analysis code. The 1st and 2nd order backward 

Euler schemes are implemented as the temporal 

discretization. As the spatial discretization, the 1st and 2nd 

order upwind schemes, centered differencing scheme 

and Lax-Wendroff scheme are implemented to evaluate 

the accuracy, the numerical diffusion issues and stability. 

In this study, all of test cases are limited in single-phase 

flow to see only the effect of the numerical scheme only. 

Under the two phase flow condition, various models and 

correlations such as the wall/interfacial heat transfer 

coefficient and the wall/interfacial friction coefficient are 

determined by the flow regime. So, these coefficients are 

not smooth between different flow regimes sometime. 

This can generate noise and instability in the code results, 

which makes it challenging to observe numerical scheme 

effect alone. By using this code, this study will be 

conducted to evaluate effect of numerical diffusion and 

dispersion problems and to identify the accuracy 

improvement and the change of the stability criterion in 

system analysis code through a simple pipe flow 

simulation.  

 

 
Fig. 1. Algorithm of single phase transient analysis code 

 

2.1 Numerical Tests 

 

A single phase pipe flow with a sine pulse of 

temperature is modeled by MARS and the NTS codes 

separately and the results are compared to each other. Fig. 

2 shows the configuration of single phase pipe flow with 

a sine pulse of temperature. In this test, the fluid flows at 

1m/s through the pipe with cross sectional area of 0.5m2 

and 20m in length. The initial temperature and pressure 
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of the fluid is 300K and 101,325Pa, respectively. The 

temperature of the injected fluid is changed with time as 

shown in Fig. 3. The pulse width is 5sec and the interval 

is 1.5 sec. This simulation is performed for several 

numbers of meshes to compare MARS with the NTS 

code. A sensitivity test for other higher-order scheme is 

conducted. Table 1 shows the higher-order numerical 

schemes used for the sensitivity tests. 

 

 
Fig. 2. Configuration of single phase pipe flow with sine pulse 

of temperature 

 
Fig. 3. Temperature profile of fluid injected at pipe inlet 

 
Table I: Higher-order Numerical Schemes for Sensitivity 

Tests 

Temporal scheme Spatial scheme 

1st order backward Euler 

scheme 

1st order upwind scheme 

2nd order upwind scheme 

2nd order backward Euler 

scheme 

Centered differencing 

scheme 

Lax-Wendroff scheme 

 

 

2.2 Results 

 

Figs. 4-6 show the results of higher-order numerical 

schemes for sensitivity. The mesh size and the time step 

is 0.5m and 0.01sec, respectively. Fig. 4 shows the 

comparison of the 1st order and 2nd order spatial schemes 

when the 1st order temporal scheme is fixed. In the 1st 

order spatial scheme, the temperature profile is 

deteriorated due to the numerical diffusion. However, the 

accuracy is improved in the 2nd order spatial scheme as 

shown in Fig. 4. Figs. 5 and 6 show the comparison of 

the 1st order and 2nd order temporal schemes when the 1st 

order or 2nd order spatial numerical scheme is fixed. In 

this case, the improvement of accuracy is not expected 

when the temporal scheme is higher order. However, the 

temperature below 300K or above 350K is predicted 

locally in the 2nd order numerical scheme. Since the input 

temperature range is 300 to 350K, it is impossible to 

predict the temperature below 300K or above 350K. To 

compare quantitatively these results in terms of the 

accuracy, R2-value for each numerical schemes is 

calculated. These results are indicated in Table II. The 1st 

order temporal scheme and 2nd order Lax-Wendroff 

scheme shows the best accuracy as shown in Table II.  

 

 
Fig. 4. Sensitivity results of the spatial numerical schemes 

 

 
Fig. 5. Sensitivity results of the temporal numerical schemes 

for the 1st order or 2nd order upwind scheme  
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Fig. 6. Sensitivity results of the temporal numerical schemes 

for Lax-Wendroff(LW) or centered differencing(CD) scheme  

 
Table II: R2-value for each numerical schemes 

 1T1S 

Upwind 

2T1S 

Upwind 

1T2S 

Upwind 

2T2S 

Upwind 

R2 0.911 0.906 0.993 0.996 

 1T2S 

LW 

2T2S 

LW 

1T2S 

CD 

2T2S 

CD 

R2 0.997 0.995 0.993 0.973 

 

LW is Lax-Wendroff scheme, CD is centered 

differencing scheme and 1T1S means the 1st order 

temporal and 1st order spatial scheme. Based on this rule, 

legends ‘2T1S’ and ‘2T2S’ are designated to indicate 

different numerical schemes.  

To evaluate the stability of each numerical scheme, the 

maximum Courant number is compared in Table III. The 

maximum Courant number is decreased when the only 

temporal scheme is advanced as shown in Table III. In 

case of 1T2S LW, the maximum Courant number is 

similar to 1T1S Upwind. Therefore, 1T2S LW case is the 

best in terms of the numerical stability. 

In this case, when the temporal scheme is higher order, 

the accuracy is not improved and the stability is reduced. 

To identify this problem, the theoretical stability is 

calculated by the Lax analysis, which is the practical 

method to calculate the stability of numerical scheme. In 

this problem, the velocity and pressure is constant. So, 

since this case is the same with solving only the energy 

equation, the Lax analysis is applied to the energy 

equation.  

 
𝜕

𝜕𝑡
(𝜌𝑘𝑈𝑘) +

1

𝐴

𝜕

𝜕𝑥
(𝜌𝑘𝑈𝑘𝑣𝑘𝐴) = −

𝑃

𝐴

𝜕

𝜕𝑥
(𝑣𝑘𝐴) 

 

+𝑄𝑤𝑘 + 𝐷𝐼𝑆𝑆𝑘                (1) 

where ρ, U, A, v, P are density, internal energy, flow 

area and velocity, 𝑄𝑤 is wall heat transfer rate and DISS 

is the dissipation term. 

Equation (1) is the energy equation using the single 

phase transient analysis code. This equation is simply 

discretized using the 1st order and 2nd order temporal 

scheme with the spatial scheme like equation (2) and (3). 
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+
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(
3

2
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𝑛+1 − 2𝑓𝑖
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1

2
𝑓𝑖
𝑛−1) 

 

+
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𝑛𝑢𝑛+1 >𝑖−1/2

∆𝑥
= 𝑅𝑖

𝑛 

 (3) 

where f = 𝜌𝑘𝑈𝑘. The angle brackets denote the fluxes 

for each spatial scheme. These discretized equations are 

rearranged like equation (4). 

 

𝑓𝑖
𝑛+1 = 𝑎𝑖𝑓𝑖−1

𝑛 + 𝑏𝑖𝑓𝑖
𝑛 + 𝑐𝑖𝑓𝑖+1

𝑛 + 𝑅𝑖
𝑛         (4) 

 

where 𝑎𝑖 , 𝑎𝑖  and 𝑎𝑖  are expressed by the Courant 

number. Then, for all the node, 

 

𝐹𝑛+1 = 𝐴𝑁𝐹
𝑛 + 𝑅𝑁                         (5) 

 

where  
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From the Lax analysis, ∥ 𝐴𝑁 ∥  implies the stability 

criterion. Thus, in the 1st order temporal and 1st order 

upwind scheme, the maximum Courant number, which is 

the stability criterion, is 1 as shown in Table III. However, 

in the 2nd order temporal scheme which is equation (3), 

the coefficient of 𝑓𝑖
𝑛+1 is 3/2. Compared to the 1st order 

temporal scheme, the inverse of this coefficient is 

multiplied to equation (4). Therefore, ∥ 𝐴𝑁 ∥ is 2/3 in the 

2nd order temporal scheme as shown in 2T1S Upwind of 

Table III. The more detail discussion will be presented 

during the conference. 

 

Table III: Maximum Courant number for each numerical 

schemes 

No. 

node 

1T1S 

Upwind 

2T1S 

Upwind 

1T2S 

Upwind 

2T2S 

Upwind 

20 0.9987 0.7786 0.2989 0.1599 

40 1.0197 0.6198 0.2599 0.1200 

80 0.9999 0.5999 0.2400 0.1280 

Average 1.0061 0.6661 0.2633 0.1360 
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No. 

node 

1T2S 

LW 

2T2S 

LW 

1T2S 

CD 

2T2S 

CD 

20 0.9968 0.4596 0.2302 0.1201 

40 0.9997 0.1700 0.1420 0.0760 

80 0.9999 0.1560 0.1200 0.0600 

Average 0.9998 0.2619 0.1641 0.0854 

 

3. Conclusions 

 

This study evaluated the feasibility of the higher-order 

numerical scheme for the next generation nuclear system 

analysis code. The accuracy is improved in the 2nd order 

spatial scheme. However, the numerical stability is 

decreased and the accuracy is not expected to improve 

when the only temporal scheme is advanced. Therefore, 

the 1st order temporal scheme and 2nd order Lax-

Wendroff scheme showed the best performance in terms 

of the accuracy and the numerical stability.  

For further research, the dependency of numerical 

stability on the boundary conditions, initial conditions 

and geometry will be studied.  
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