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1. Introduction 
 

A power conversion system using CO2 as a working 
fluid over the critical point of CO2 is known to achieve 
high performance with its compact footprint, simple 
layout and no phase change. This promising system, 
typically called a S-CO2 Brayton cycle, is being studied 
for various power generation applications including the 
next generation nuclear systems. These advantages of S-
CO2 Brayton cycle mainly come from its lower 
compressing work by pressurizing the CO2 near the 
critical point. However, this also implies that the system 
can be operating under two-phase sub-critical state 
during transients [1]. 

A few studies on the S-CO2 system transient analysis 
with analytical codes have been previously carried out 
[2-4]. However, the analysis for the CO2 two-phase 
analysis near the critical point is very rare. To overcome 
the two-phase errors in system analysis codes and lack 
of research near the critical point of CO2, the authors 
have been developing a 1-D system dynamic analysis 
code using Homogeneous Equilibrium Model (HEM), 
called KAIST-STA (KAIST-System Transient 
Analysis) code [5]. Some research works of using the 
HEM to a simulation of CO2 expansion inside two-
phase ejectors for refrigeration systems can be found in 
the open literature. These studies shows the HEM is a 
good assumption for the flow near or above the CO2 
critical point [6-11]. S-CO2 Brayton cycles are typically 
designed to operate closely above the critical point at 
the main compressor, the minimum temperature and 
pressure state of cycle, the cycle conditions wouldn’t be 
far from the critical point even under transient 
conditions.  Thus, HEM is adopted in the KAIST-STA. 
The field equations of KAIST-STA code for continuity, 
momentum and energy conservations are represented 
below. 
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2. Energy conservation equation 
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3. Momentum conservation equation 
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The developing code was verified with the 
GAMMA+ code as a reference, developed as a gas 
system transient analysis code in KAERI [12-13]. In this 
study, a validation result of KAIST-STA code is 
presented. The experimental data is from the CO2 
compressing test facility called SCO2PE (Supercritical 
CO2 Pressurizing Experiment) at KAIST. 

 
2. Modeling and Validation Results 

 
Prior to the simulation of whole SCO2PE facility, the 

major components, the canned motor type compressor 
and PCHE type heat exchanger, were separately 
modeled and simulated with KAIST-STA code. It is the 
first validation of KAIST-STA code with an 
experimental data under the critical point of CO2, so the 
test facility is modeled as an opened system as shown in 
Fig. 1. The loop is divided at the pipe between the 
expansion valve and the heat exchanger, and the both 
boundary conditions were set as time dependent 
volumes considering the experimental data in 
accordance with the time. Thus, the pressures, 
temperatures and the mass flow rates of CO2 were 
provided in the boundary volumes via lookup tables, 
and also the pressure drop in the expansion valve was 
inserted as an input data due to the lack of information 
of the glove valve for modeling. 
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Fig 1. Nodalization of SCO2PE test facility for 
modeling with KAIST-STA code 

 
There are 3 measuring points in the facility, the 

compressor inlet, compressor outlet and the heat 
exchanger inlet. In this study, it is set up such that the 
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compressor inlet condition is 33.35℃, 7.41Mpa and 
0.96kg/s of CO2 mass flow rate at steady-state, and the 
cooling water mass flow rate increases from 0.055kg/s 
at the steady-state condition to 0.15kg/s for going 
through CO2 2 phase state. 

Fig. 2 shows the cooling water mass flow rate 
variation versus time. 
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Fig 2. The cooling water mass flow rate variation versus 
time 

 
Figs. 3-5 show the validation results between the 

experimental data (the black rounded symbols) to 
KAIST-STA code (the solid lines) at the compressor 
inlet point. The PCHE experimental correlations of 
SCO2PE facility were used in the code. Fig. 6 is the 
variation of the cooling water outlet temperature. The 
compression result shows that the developed code with 
the PCHE correlation can predict the PCHE heat 
transfer performance with a good agreement. Fig. 7 
represents the compressor inlet condition variation 
during the transient state. It is shown that the code can 
simulate the system with a similar tendency not only in 
the single-phase situation but also for the 2 phase-state. 
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Fig 3. Pressure trend comparison at the CO2 compressor 
inlet of SCO2PE 
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Fig 4. Temperature trend comparisonat the CO2 
compressor inlet of SCO2PE 
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Fig 5. Quality trend comparison at the CO2 compressor 
inlet of SCO2PE 
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Fig 6. Temperature trend comparison at the cooling 
water outlet of the PCHE 
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Fig 7. T-s diagram of the experiment and KAIST-STA 
code analysis at the compressor inlet point 
 

Figs. 8 and 9 are the validation results of compressor 
outlet pressure and temperature. The code results show 
quite good agreement compared to the experimental 
data. 
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Fig 8. Pressure trend comparison at the CO2 compressor 
outlet of SCO2PE 
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Fig 9. Temperature trend comparison at the CO2 
compressor outlet of SCO2PE 

 
3. Conclusions 

 

In this study, the validation of KAIST-STA code with 
a trans-critical CO2 experimental data going through the 
supercritical-state to 2 phase-state is presented. Since 
the authors have experienced some limitations for 
modeling the test facility due to lack of information, the 
test facility is initially modeled as an open system with 
time dependent volumes.  

The validation results are satisfactory as shown in the 
results. The T-s diagram shows that the code using 
HEM shows a good agreement for this case comparing 
with the experimental data not in the single-phase 
situation but also within the 2 phase-state. 

This is a simple approach to validate a system code 
with experimental data. To perform more reasonable 
validation with the experiment, the calculation with a 
closed loop modeling will be continuously carried out as 
the next step. 
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