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1. Introduction 

 
Since the 9∙11 terrorist attack in 2001, the 

importance of physical protection measures to protect 

nuclear materials and nuclear facilities from emerging 

threats is increasing worldwide. Under this 

international situation, Korea established 'Design Basis 

Threat (DBT)' through 'Physical Protection Council' in 

December 2009. With the establishment of the DBT, 

the nuclear power companies need to construct a 

physical protection system that satisfies the established 

national DBT, and the physical protection regulatory 

agency should evaluate whether the installed physical 

protection system satisfies the DBT. It is important to 

establish the latest protection measures based on the 

result of risk assessment in which the risk of domestic 

nuclear facilities is evaluated based on DBT. Therefore, 

in this study, a methodology is proposed to improve the 

effectiveness and reliability of a physical protection 

system by using probabilistic methodology based on 

stochastic process to evaluate the risk of nuclear 

facilities. 

 

2. Research Purpose and Method 

 

The risk assessment method can be expressed as 

follows according to its general definition, which 

combines the probability of risk and the severity 

(damage) of a potential result. 

 

R P C   

 

P is the probability of occurrence and C is the 

outcome (damage) of the attack. In this risk (R) 

formula, the probability (P) that an event occurs 

becomes the product of the attack probability (PA) of 

the enemy against the facility and the probability (PS|A) 

that an enemy will succeed if an attack occurs. 

 

|[ ]A S AR P P C    

 

The probability that an attack will fail indicates 

how well the physical protection system defends. This 

is called physical protection system effectiveness (PE). 

The equation is expressed as follows. 

 

| 1S A EP P   

 

The effectiveness probability(PE) is the product of 

probability of Interruption(PI), which is the probability 

that reaction forces will arrive before the enemy 

completes the attack, and probability of 

neutralization(PN), which is the probability that the 

reaction forces engage with the enemy to neutralize 

them. 

 

E I NP P P   

 

Taking the above equations into consideration, the 

risk is as follows.  

 

[ (1 )]A I NR P P P C      

 

In other words, when evaluating the effectiveness of 

the physical protection system of a nuclear power plant, 

it is important to not only detect and delay intruders 

with the detection system in the vulnerable entry path, 

but also to consider the engagement of reaction forces 

equipped with proper weapon systems to neutralize the 

enemy. 

 

2.1 Need of probability process application 

 

A probabilistic approach is needed to mathematically 

model the battle situation of two units, to predict the 

amount of damage of the two units, and to determine 

the probability of victory in a battle. In order to 

simulate the dynamic engagement situation over time, 

it is necessary to use a stochastic variable with an 

appropriate probability distribution to simulate 

conditions similar to the real world. Various methods 

such as Lanchester equation, Markov chain, and Monte 

Carlo method are used to estimate the neutralization 

probability. In this study, we present a methodology for 

deriving the neutrailization probability from a 

probabilistic Lanchester model using Markov chain 

model, which was developed by Taylor (1983) and 

furthered evolved by Ancker and Gafarian (1988), and 

Kingman (2002)[2]. Also, we present a new 

methodology that supplements the limitations of the 

Lanchester equation. 

 

2.2 Probabilistic Lanchester Model 

 

Lanchester presented the loss of two units in a 

simple mathematical model in combat situations. When 

B(t) and R(t) are defined as the troop capacities 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 18-19, 2017 

 
according to time, and b and r are defined as the 

killing powers of the Blue team and the Red team, the 

amount of military strength of each team according to 

time is expressed by the following equation[2]. Solving 

the differential equation of Eq.(1) gives Eq.(2).  
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These two equations always satisfies the relation of 

Eq.(3), which is called 'Lanchester's square law'.  

 
2 2 constantrR bB                   (3) 

 

In other words, if we know b and r that indicate the 

killing powers of Blue team and Red team, and the 

capacities of their troops at the initial time, the loss of 

both troops after a certain time has elapsed can be 

predicted. 

In a Lanchester's differential equation type of 

combat model, the disadvantage is that the damage of 

the troop is only a fixed constant value as shown in 

Eq.(3). To compensate for this, Taylor showed that the 

number of each group is an integer that is not negative, 

and it is assumed that no more than one casualty occurs 

at one transition. Also, the Lanchester model is 

extended to the probabilistic Lanchester model by using 

Markov chain, and this extended model is the most 

common form of the probabilistic Lanchester model[6]. 

When the capacity and the lethality of the Blue team 

are B and β, and those of the Red team are R and α, 

and when the troop capacities of both teams at time t 

were considered as troop status variables, state of 

markov chain is defined as (Bt, Rt), where Bt and Rt are 

natural numbers. The next state that can occur at any 

point in a state of markov chain is the case where one 

casualty occurs in Blue team or Red team, or both 

casualties do not occur. That is, the troop capacity state 

variables (Bt, Rt) have a markov property and can be 

expressed as a continuous time markov chain(CTMC) 

in which the above three state transitions occur. The 

probabilities for the three transitions are shown as 

follows. 
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  (4) 

Let 
1 2 1 2

( )i i j jP t  be the probability that the state will 

transit from (j1, j2) to (i1, i2) for t time in the CTMC 

defined as below.  

 

1 2 1 2 1 2 1 2( ) {( , ) ( , ) | ( , ) ( , )},   for all s, t 0i i j j t s t s s sP t P B R i i B R j j      

 

Let us define variables, 
1 2 1 2k k j jq  and 

1 2j j  in Eq.(5) 

and (6).  

 

1 2 1 2 1 2 1 2 1 2 1 2( ) ,   ( , ) ( , )k k j j k k j jP dt q dt k k j j     (6) 

1 2 1 2 1 2
( ) 1j j j j j jP dt dt                                     (7) 

 

The variables 
1 2 1 2k k j jq  and 

1 2j j  have the following 

values according to the probability in Eq.(4).  

 

  
1 2 1 2 1, 1,0 except for ,  k k j j i jij ij ijq q j q i        ( 8) 

ij i j                                                            (9) 

 

Let us define a new variable, 
1 2 1 2i i j j  as follows by 

using two variables defined as Eq.(8) and Eq.(9). 
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Assuming U has a matrix size of BR × BR with an 

element 
1 2 1 2i i j j and P(t) is a transition probability 

matrix with an element 
1 2 1 2

( )i i j jP t , the following 

equation is satisfied.  

 

    ( ) ( )P t UP t                            (11) 

 

Solving Eq.(11) gives the following. 

 

( ) exp( )P t Ut                          (12) 

And then,  
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     Using Eq.(12) and Eq.(13), the probability that the 

state transitions over time t can be calculated, and if 

the initial troop states of the Blue team and the Red 

team are given, the probability distributions of the 
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troop capacities of Blue team and Red team at any time 

can be calculated by this method of calculation. 

 

2.3 Shooting time interval model 

 

A previous study showed that the method of 

reducing the average shooting time interval is 

relatively more effective than the method of raising the 

hit probability to reduce the engagement time and 

increase the probability of victory in a normal battle 

situation. However, as shown in Table 1, in the war 

game model operated by the Korean Army, instead of 

using the probability distribution on firing time interval, 

one shot time is calculated by defining the shooting 

procedure for each weapon system and applying the 

average time for each shooting procedure. Here, the 

average shooting time means a constant at which the 

same time is always input[3]. 

This means that it is necessary to present a more 

realistic method of deriving the shooting time since 

defining the unit time of a specific event as the average 

interfiring time in a simulation may give results 

different from reality. 

 

Table 1: Comparison Inter-firing time interval and 

variables in DNS and AWAM model[3] 

 

German ground forces 

C4ISR Effect 

Analysis Model(DNS) 

Ground weapon effect 

analysis model 

(AWAM) 

Scale Army division level 
Army battalion, 

Regimental level 

Inter-

firing 

time 

interval 

Calculate shooting 

time by  constant 

averaging of aiming 

time and shooting 

preparation time 

Define a constant by 

constant average 

times of aiming, 

reloading, and holding 

PH 

(Prob. 

of Hit) 

Classified according 

to fire, burial, target 

type, distance, degree 

of protection 

Classified according 

to posture depending 

on distance, exposure, 

and movement 

PK 

(Prob. of 

Kill) 

Conditional 

probability that 

depends on PH 

Classified according 

to target position 

depending on 

distance, exposure 

 

If Lanchester differential equations use simple 

averaging over the firing time interval, a previous 

study using probability distribution suggested that if 

shooting time interval is limited to the case of 

exponential distribution and Erlang-2 distribution, 

analytical solution can be obtained. Moreover, 

regardless of analytical solution, analytical proximal 

solution or simulation, it is suggested that it is more 

desirable to use the hit interval time model, because it 

is possible to reduce analysis time and effort in the 

stochastic modeling of process of transition from hit to 

hit, rather than dealing with the process of transition 

from shoot to shoot. 

However, since there is a limitation in obtaining 

information about the hit interval time probability 

distribution and only the data about the shooting time 

interval or the hit probability is available in many cases, 

the hitting interval time probability distribution, that is, 

the probability density function or the cumulative 

probability distribution function, should be derived 

from the firing interval time probability distribution 

characteristics. By overcoming the limits of the 

Lanchester square law and by exploiting the firing time 

probability distribution and not the constant firing time 

interval, modeling and results that are more similar to 

the actual battlefield situation could be derived[1]. 

In order to obtain the probability density function, 

we first define variables and symbols as follows. N is 

the number of fires until hit and p is the hit probability, 

Fn(t) is the n-convolution of cumulative probability 

function of shooting time interval distribution. If the 

probabilistic density function and the cumulative 

distribution function of the random variable of hitting 

interval are defined as h(t) and H(t) as described above, 

for now the cumulative distribution function is as 

follows. 
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The probability density function, h(t) can be 

obtained by differentiating cumulative density function 

Eq.(14). 
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   The hit time interval probability density function, h(t) 

can be expressed by considering both the first hit, the 

second hit, or the case of hit after several failed hits. 

 
(2) 2 (3)( ) ( ) ( ) ( )h t pf t pqf t pq f t        (16) 

 

    Laplace transformation on both left and right sides 

in Eq.(16) is as follows.  
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The h(t) can be obtained by taking a Laplace 

inversion on both sides in Eq.(17). That is, if there is 

information on the probability density function of 
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shooting time interval f(t), the probability distribution 

function of hit time interval can be obtained. 

In most cases, it is difficult to obtain an explicit 

solution manually due to the complexity of the function 

when taking Laplace inversions. Hence, the numerical 

analysis approach to obtain this solution is to be left as 

a research project in the future 

 

3. Conclusions 

 

In the evaluation of the effectiveness of a physical 

protection system, the neutralization probability of the 

infiltrating enemy by the reaction force should be 

identified as an important factor, but it is difficult to 

obtain information on an accurate calculation method 

through combat simulation. The most used 

methodology for finding neutralization probability is 

markov chain model. Based on that neutralization 

probability is proportional to the number of shooters of 

each troop if weapon systems and degree of training are 

identical between each troop, the probability can be 

obtained. In this paper, the different method was 

proposed that the troop capacity over time can be 

predicted by using the Lanchester equation based on 

the stochastic process theory which predicts troop 

capacity by using differential equations. The above two 

models have something in common with variable, 

which indicate the killing powers of each weapon 

system. However little information is known about 

predicting the value. Lastly, since Lanchester equation 

has the limitation that the average shooting time as a 

constant value is used in simulation for predicting the 

probability, the shooting interval time as a probability 

distribution was developed to improve the reliability of 

the probability. However, the limitation that it can only 

simulate the engagement between an infiltrating enemy 

and a reaction force with a single weapon system, an 

engagement of two groups with mixed weapon systems 

is difficult to simulate still exists. The comparison of 

the three models is shown in the following Table 2.  

Table 2: Comparison of methodology for finding of 

neutralization probability 

 Markov Chain 
Lanchester’s 

equation 

Shooting time 

interval 

Main 

Merit 

Easy 

understanding 

in transition 

of status 

More clear 

insights of 

performance 

measure  

Exploiting 

shooting time 

probability 

distribution 

Solution 

Form 

Acquiring of 

explicit results 

Acquiring of 

matrix geometric 

solutions 

Limiting on 

finding 

analytical 

solution 

Weapon 

System 
Single 

Single/ 

Mixed 
Single 

 

Since invaders are highly likely to be equipped with 

a variety of weapons systems to sabotage nuclear 

facilities, future works on probabilistic analysis of the 

attributes of a mixed weapon system and a study of the 

troop transfer during engagements will enable 

simulation of more realistic battlefield situations. 
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