Experimental Study of Natural Circulation in CLOF (Complete Loss Of RCS Flow rate) Accident with SMART-ITL

Jin-Hwa Yang^{*}, Hwang Bae, Sung-Uk Ryu, Byong Guk Jeon, Hyun-Sik Park

Korea Atomic Energy Research Institute 2017. 05. 19

Contents

Introduction: SMATR-ITL & PRHRS

• Experiment: CLOF Test

- Results & Analysis
- Conclusion & Further Study

1. INTRODUCTION: SMATR-ITL & PRHRS

- 2. Experiment: CLOF Test
- 3. Results & Analysis
- 4. Conclusion & Further Study

SMART-ITL (Integral Test Loop)

Parameters	Scale Ratio	**FESTA	*VISTA-ITL
Length, $l_{_{0R}}$	l_{0R}	1/1	1/2.77
Diameter, $d_{\scriptscriptstyle 0R}$	$d_{\scriptscriptstyle 0R}$	1/7	1/21.75
Area, a_{0R}	d_{0R}^2	1/49	1/472.9
Volume, $V_{_{0R}}$	$d_{0R}^2 \cdot l_{0R}$	1/49	1/1310
Time scale	$l_{0R}^{1/2}$	1/1	1/1.664
Velocity	$l_{0R}^{1/2}$	1/1	1/1.664
Power/Volume	$l_{0R}^{-1/2}$	1/1	1.664
Heat flux	$l_{0R}^{-1/2}$	1/1	1.664
Core power	$a_{0R} \cdot l_{0R}^{1/2}$	1/49	1/787
Flow rate	$a_{0R} \cdot l_{0R}^{1/2}$	1/49	1/787
Pump head	l_{0R}	1/1	1/2.77
Pressure drop	l_{0R}	1/1	1/2.77

**<u>Facility for Experimental Simulation</u> of Transients and Accidents

*Experimental Verification by Integral Simulation of Transient and Accident System integrated Modular Advanced ReacTor

SMART

4

SMART-ITL (Integral Test Loop)

Design Figures

- Design pressure & temp.:
- Core heater power:
 - Maximum: 2.0 MW (30% of scaled full power)
 - Operation: 1.5 MW (20%) + heat loss
- External SGs
 - Proper instr. and easy maintenance
- SG & PRHRS: 4 Trains
- PSIS (CMT & SIT): 4 Trains
- ADS: 2 Trains
- Major components
 - Reactor Coolant/Secondary systems
 - PRHRS, ASIS/PSIS
 - Auxiliary systems
 - Break system, Break meas. System, Break Pool

5

- Instruments : ~ 1,344
 - P, T, flow rates, mass, power, etc.

System integrated Modular Advanced ReacTor

CLOF (Complete Loss Of RCS Flow rate)

PRHRS of SMART-ITL (1/2)

Passive Residual Heat Removal System (PRHRS)

Heat exchanger (Hx) + Emergency Cooldown Tank (ECT) + Makeup tank (MT): 4 trains

PRHRS of SMART-ITL (2/2)

ECT

TF ECT1 01

Passive Residual Heat Removal System (PRHRS)

- Heat removal by two-phase natural circulation
 - < safety shutdown temperature $(176 \degree C)$ in 36 hrs
 - Maintain < SST during 72 hrs without MT.
- Heat capacity of ECT is oversized for safety margin.

1. Introduction: SMATR-ITL & PRHRS

2. EXPERIMENT: CLOF TEST

3. Results & Analysis

4. Conclusion & Further Study

Steady State Operation

구원

Korea Atomic Energy Research Institute

KAERI

Parameter	Target Value	Measured Value
Core Power (MW)	1.50	1.67 (Heat Loss 0.17)
Core Coolant Temperatures (In / Out) (°C)	295.5 / 320.9	295.5 / 320.6
S/G Coolant Temperatures (In / Out) (°C)	320.9 / 295.5	320.6 / 298.1
Mass Flow Rate of Primary Coolant, kg/s	10.23	10.26
Pressure of PZR, MPa	15.00	15.05
Coolant Temp. of PZR, (°C)	342.1	342.1
Volume of Coolant in PZR, % (m)	70 (3.12)	70.6 (3.14)

System integrated Modular Advanced ReacTor

10

Sequence of Event

Event	Trip signal and set-point	Operation
Transient occurs Ex.) Station black-out	RCP stop & RCP coast-down FW pump stop Turbine stop	PP-RC01 ~ 04 STOP PP-MF-01 STOP
RCP Pump Signal (RPS) set-point	RCP stop + 0.37 s	$RPM = 0.9 \times RPM_{normal}$
Reactor trip signal PRHRS actuation signal (PRHRAS) CMT actuation signal (CMTAS) MSIV/FIV close start PRHRS IV open start	RPS + 1.1 s	PRHRSAS, CMTAS due to low feed water flow rate
Control rod insert	RPS + 1.6 s	Decay heat (residual heat) table
4 trains of CMT injection start	RPS + 2.2 s (CMTAS + 1.1 s)	OV-IL1,2,3,4-101 OPEN
MSIV/FIV close completed PRHRS IV open completed	RPS + 6.1 s (PRHRAS + 5.0 s)	OV-PR 1,2,3,4-03 OPEN OV-MS 1,2,3,4-01 CLOSE OV-MF 1,2,3,4-01 CLOSE
End of event	PRHRAS + 36 hr (Temp. of coolant < 215 $^{\circ}$ C)	After safety shut down condition

Introduction: SMATR-ITL & PRHRS
Experiment: CLOF Test

3. RESULT & ANALYSIS

4. Conclusion & Further Study

Mass Flow Rate & Temp. (1ry)

$$\operatorname{Ra}_{L} = \operatorname{Gr}_{L}\operatorname{Pr} = \frac{\left(\int \Delta T\right)gL^{3}}{V^{2}}\operatorname{Pr}$$

< 4000 s : NC mass flow in primary increases.

> 4000 s : NC mass flow in primary decreases.

➡ Temperature potential affects NC flow rate.

SMART System integrated Modular Advanced ReacTor

Characteristic of CMT Injection

SMART System integrated Modular Advanced ReacTor

System integrated Modular Advanced ReacTor

Safety criteria were satisfied!!

- 1) Core was not exposed during 36 hrs with PRHRS.
- 2) Temperature of primary coolant was sustained under safety shut down temperature (< 215 °C).

- 1. Introduction: SMATR-ITL & PRHRS
- 2. Experiment: CLOF Test
- 3. Results & Analysis

4. CONCLUSION & FURTHER STUDY

- CLOF accident was simulated with SMART-ITL.
- Natural circulations in the 1ry & 2ry system were analyzed with trend of pressure gradient.
- Heat balance from core (heat source) to ECT of PRHRS (heat sink) was quantified by experimental results and it was helpful to understand about progress of CLOF accident.
- Effect of CMT injection couldn't be quantified independently, but it was an important factor to remain the water level of RCS.
- If CLOF occurred in the SMART, the passive safety systems (4 trains of PRHRS & CMT) were enough to ensure safety of nuclear reactor.

Simulation with system analysis code (MARS)

- Subcooled boiling after CLOF accident
- Heat transfer in the ECT

SMART

System integrated Modular Advanced ReacTor

