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1. Introduction 

 
The need of a high-fidelity multi-dimensional core 

analysis is undeniable since it is essential to estimate the 

detailed parameters of a reactor core for the core design 

and safety assessment. Conventionally, the pin-power 

reconstruction method with an assembly-wise nodal 

analysis has widely been used for a pin-level analysis of 

the PWR cores despite of the limited accuracy, since a 

direct pin-by-pin whole-core analysis is so time-

consuming regardless of the methodology used for it. 

 It is obvious that the accuracy of the whole-core 

transport analysis is promising, but it still has a long way 

to go to be utilized easily and quickly due to the massive 

computing costs. Meanwhile, the pin-by-pin diffusion 

analysis, which may provide a bit less accurate solutions 

than by the transport analysis, can now possibly be 

performed within a reasonably short computing time. 

Also in the aspect of the accuracy, since there have been 

continuous efforts, there are many ways suggested to 

generate nice pin-wise constants so that one can expect 

an accurate pin-level solution for a whole core. 

With expecting that the accuracy of the pin-level 

diffusion analysis will closely approach to that of the 

transport analysis soon, the HCMFD (Hybrid Coarse-

Mesh Finite Difference) algorithm has recently been 

developed, which is a combination of two CMFD 

(Coarse-Mesh Finite Difference) accelerations with the 

Nodal Expansion Method (NEM) applied on pin-level. 

[1-3] In the HCMFD framework, the whole-core pin-by-

pin analysis can effectively be performed by an efficient 

parallel computing in a local-global non-linear iterative 

scheme. In previous studies on the HCMFD method, its 

feasibility was evaluated only in a 2-D scheme. In this 

paper, the detailed features of the 3D HCMFD algorithm 

and some numerical results are presented. 

 

2. The HCMFD Algorithm 

 

In the HCMFD algorithm, two CMFD methods are 

nonlinearly coupled for an iterative local-global strategy, 

as shown in Fig. 1. The solution of the global eigenvalue 

problem, represented by Eq. (1), is provided by the one-

node CMFD method [4] and it is used to prepare the 

constraints and boundary conditions of the local 

problems: the fixed fission source and incoming currents 

on the boundary.  
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At the same time, the local fixed source problems, 

represented by Eq. (2), are solved by the conventional 

two-node CMFD method based on NEM, with the given 

fixed source and incoming current boundary conditions. 
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The solutions of the local problems are used to calculate 

both homogenized group constants and reference coarse-

mesh interface quantities to generate the correction 

factors for the global one-node CMFD operators so that 

the eventual solution of the global problem is equivalent 

to a pin-level nodal analysis. 

 

 
Fig. 1. Schematic diagram of the HCMFD algorithm 

 

In the x-y plane, each single fuel assembly is simply 

treated as a coarse mesh in the global one-node CMFD, 

while the pin cells are the fine meshes in each local 

problem. Unlike in the 2-D case, the size of the axial (z-

directional) meshes in both global and local problems 

can flexibly be determined so that it can possibly be 

much larger than the fine mesh size in the x-y directions. 

For this reason, the aspect ratio of a 3-D node can be very 

far from unity in 3-D applications of the HCMFD 

algorithm. As in the 2-D scheme, the standard NEM 

based on the 4th-order polynomials is used for all 

directions including axial direction in this work. 

 

2.1 One-Node CMFD for Global Eigenvalue Problem 

 

As in Fig. 2, two corrections factors are introduced for 

each interface in the one-node CMFD method. The two 

correction factors are determined with Eqs. (3) and (4) 

using the reference surface flux and net current, and they 

are implemented in the global net current formulation as 

in Eq. (5) to preserve the reference higher-order surface-

average information. In this case, the reference surface-
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averaged flux and net current are calculated by taking the 

average of the quantities obtained from local fine-mesh 

NEM calculations. 

 

 
Fig. 2. Inner interface in one-node CMFD 
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(5) 

 

2.2 Two-Node CMFD for Local Fixed-Source Problem 

 

In the conventional two-node CMFD, only one 

correction factor is introduced for each interface as 

depicted in Fig. 3 to preserve the net current. The 

correction factor is determined using reference net 

currents as in Eqs. (6) and (7) where the reference net 

currents are estimated by a pin-level NEM calculation. 

Then it is used in the net current formulation in Eq. (8) 

to preserve the reference net current. 

 

 
Fig. 3. Inner interface in two-node CMFD 
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Since the local problems are fixed-source problems, 

the incoming partial currents are given on the boundary. 

The correction factors and corrected net currents on the 

boundary, especially for the right-end boundary, are 

expressed as in Eqs. (9) and (10). Those for the left-end 

boundary can similarly be obtained. In 3D HCMFD, this 

process is repeated for all 3 directions. 
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Fig. 4. Right-end boundary in two-node CMFD 

 

Basically, the global node balance is implemented to 

each local problem in terms of the modulated fluxes and 

also the modulated incoming partial currents on the 

boundary as boundary conditions. For a better 

convergence, the local two-node CMFD calculation is 

performed twice per one local analysis with an overall 

exchange of the partial currents and the transverse 

leakages between the local problems. In this way, the 

newest high-order quantities estimated by solving each 

local problem can be quickly reflected in neighboring 

local problems, and the convergence can be accelerated 

and also the possible numerical instability at the early 

stage of the local-global iteration can be eliminated. 

 

2.3 Nodal Expansion Method in Local Problems 

 

In the two-node CMFD acceleration scheme based on 

NEM, the reference net currents on every inner interfaces 

are estimated by NEM with neighboring two nodes. For 

each node and each group, the detailed 1-D fluxes are 

expanded by the 4-th order polynomial basis functions. 

The 2-nd order transverse leakage terms are pre-

estimated using the node-averaged transverse leakage 

values in three sequential nodes. In this study, the matrix 

equations for obtaining the expansion coefficients are 

solved by utilizing the analytic solutions since it is 

computationally more efficient.  

Meanwhile, on the local boundary, there is no 

neighboring node to be coupled and thus it will be a 

single-node problem. On the boundary node, the node-

averaged transverse leakage in the neighboring node 

which is outside of the local boundary should also be 

given since they are not available in each independent 

local problem. As shown in Fig. 5, there are two kinds of 

information on each boundary surface which should be 

given. Since no information can be exchanged after once 

the parallel computing for the local problems begins, 

they are all saved and distributed prior to the local fixed 

source calculation. 

 
Fig. 5. Information on every local boundary 
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3. Numerical Results 

 

In this work, a 2-D modified EPRI-9R benchmark 

problem described in Figs. 6 and 7 was simply extended 

to a 3-D problem as shown in Fig. 8. The active core 

height is set to be 200cm with upper and lower 20cm 

reflector layers, and coarse mesh size in z-direction is 

basically 20cm. In order to see impacts of control rod 

position, two cases were considered in this study, one 

with the central control rod fully inserted (Case 1), and 

the other case with the control rod inserted to the mid-

plane of the active core (Case 2). 

The convergence criterion for both fission source and 

eigenvalue was 10-7, and the local and global problems 

were both solved by a BiCGSTAB (Biconjugate gradient 

stabilized) method [5]. The local analysis was performed 

every 10 global outer iterations, which is an optimized 

number in terms of computing time for the two 3-D cases. 

All calculations were performed on Intel Xeon E5-2697 

v3 2.60 GHz CPU with 28 physical cores. In this study, 

the parallel computing was performed using the OpenMP 

parallel algorithm. [6] 

 

 
Fig. 6. 2-D modified EPRI-9R benchmark problem 

 

 
Fig. 7. EPRI-9 fuel assemblies 

 

 
Fig. 8. 3-D extension of EPRI-9R benchmark problem 

 

First, the parallelizable portion of the whole 

computational loads, the so-called parallelism, 

depending on the axial partition was briefly analyzed in 

Case 1 and the results are given in Table I. Even with the 

minimum axial partition with a 20 cm coarse mesh size, 

the parallelism is 99.35%, and it further increases to 

99.90% when the number of axial nodes is increased by 

a factor of 10. Table I indicates that the parallel 

computational efficiency of the 3D HCMFD algorithm 

can be very high. 

 

Table I. Parallelism in Case 1 

Method Mesh size (cm) Parallelism (%) 

HCMFD 1.4 x 1.4 x 20 99.35 

HCMFD 1.4 x 1.4 x 2 99.90 

 

To investigate the numerical performances depending 

on the number of axial layers in local problems, two 

benchmarks were solved with various axial divisions as 

shown in Tables II and III. First, the comparison of the 

accuracy of solutions depending on the axial mesh 

refinement in local problems is given in Table II. For 

comparison, fine-mesh FDM solutions are also included, 

but it should be noted that they cannot be true references 

since the mesh size for FDM is not small enough. In this 

work, the k-eff values by HCMFD with 10 axial layers 

were chosen as reference values. 

 
Table II. Impacts of axial mesh size on k-eff 

Case Method 
Axial 

layers  

Mesh size 

(cm) 
k-eff 

Error 

(pcm) 

1 HCMFD 1 1.4x1.4x20 0.881055 -2.4 

1 HCMFD 2 1.4x1.4x10 0.881077 -0.2 

1 HCMFD 10 1.4x1.4x2 0.881079 Ref. 

1 FDM 10 0.2x0.2x2 0.881083 +0.4 

2 HCMFD 1 1.4x1.4x20 0.905878 +16.4 

2 HCMFD 2 1.4x1.4x10 0.905757 +5.7 

2 HCMFD 4 1.4x1.4x5 0.905714 +1.2 

2 HCMFD 10 1.4x1.4x2 0.905702 Ref. 

2 FDM 10 0.2x0.2x2 0.905650 -5.2 

 

In Table II, one can note that the axial mesh refinement 

results in a converged solution for the two cases. For the 

1st benchmark (Case 1), a coarse mesh (10~20cm) NEM 

can provide accurate solutions, while the solution is more 

sensitive to the axial mesh size in Case 2. This is because 

the axial flux profile is rather smooth in Case 1 and it is 

strongly position-dependent due to the partial insertion 

of the control rod in Case 2. In the case of high axial 

heterogeneity, the axial mesh size for the NEM should be 

rather small, 5~10 cm, for an accurate solution. 

Table III shows the parallel computational efficiency 

depending on the number of cores and the axial divisions 

in local problems. While the parallel computational 

efficiency decreases as the number of cores increases, the 

efficiency was slightly higher with more axial layers per 

local problem since the parallelism increases as the axial 
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divisions increase. It is expected that the parallel 

computational efficiency can be improved by further 

optimization in utilizing the OpenMP parallel algorithm. 

 

Table III. Parallel computational efficiency in Case 1 

No. of 

core 

Axial layers 

per local 

problem 

CPU time 

(sec) 
Speed-up 

Efficiency 

(%) 

1 1 8.75 - -- 

2 1 4.55 1.92 96.15 

5 1 2.05 4.27 85.37 

10 1 1.26 6.94 69.44 

20 1 0.82 10.67 53.35 

1 4 57.17 - -- 

2 4 29.47 1.94 97.00 

5 4 12.90 4.43 88.64 

10 4 7.64 7.48 74.83 

20 4 5.37 10.65 53.23 

 

Additionally, by the inborn characteristics of the 

HCMFD, one can easily set the degrees of the axial mesh 

refinement in a layer-by-layer sense. Basically, to obtain 

a reasonably accurate solution, a coarse axial mesh is 

enough in an axially-homogeneous geometry, like in the 

Case 1 benchmark, while a bit finer mesh is required 

when there is a strong axial heterogeneity. When treating 

a problem with a local axial heterogeneity as in Case 2, 

a regional mesh refinement can be very useful to reduce 

the computing time. In the HCMFD algorithm, a regional 

axial mesh refinement is a simple work since the local 

mesh refinement is separately done after defining the 

global coarse meshes. 

Actually, in the 3D HCMFD algorithm, one can 

flexibly determine the eventual z-directional mesh size 

in two steps, by adjusting the coarse mesh size itself or 

by refining the local mesh size in coarse-mesh local 

problems. After some tests on the impact of each 

approach on the accuracy and computing time, we found 

that the refinement of the local mesh size with a uniform 

coarse mesh size is a more favorable approach. For this 

reason, only the local refinement with fixed coarse axial 

mesh (20cm) was considered for some detailed analysis 

regarding the regional mesh refinement in this study. 

 

Table V. Regional axial mesh refinement in Case 2 

Global 

Layer # 

Regional Axial Mesh Refinement 

#1 #2 #2 #3 

1 1 4 1 2 

2-5 1 4 1 1 

6-7 1 4 4 4 

8-11 1 4 1 1 

12 1 4 1 2 

k-eff 0.905878 0.905714 0.905660 0.905700 

Error (pcm) +16.4 +1.2 -4.2 -0.2 

CPU time 

(sec) 
9.41 49.39 16.08 18.15 

 

In Table V, refinement #1 and #2 are the uniformly 

refined cases as already presented in Table II, while #3 

and #4 are locally-refined ones. In #3, the regional axial 

mesh refinement is only applied near the tip of the 

control rods, while the axial reflector regions are 

additionally refined in #4. By using a regional refinement 

only near the control rod tip, the k-eff error was 

dramatically decreased from 16.4 pcm to 4.2 pcm, and it 

was further decreased to 0.2 pcm by the additional 

refinement in axial reflector regions. The single-core 

computing times in refinement #3 and #4 were about one 

third of that in #2, the uniformly refined case. 

 

4. Conclusions 

 

The HCMFD algorithm was successfully extended to 

a 3-D core analysis without any numerical instability 

though the aspect ratio of the node shape is very far from 

unity. We have shown that 3-D pin-wise core analysis 

can be done very effectively with the HCMFD 

framework due to its inherent characteristics. 

Additionally, it was demonstrated that parallel efficiency 

of the new 3D HCMFD scheme can be quite high on a 

simple OpenMP parallel architecture. It is concluded that 

the 3D HCMFD will enable an efficient pin-wise 3-D 

core analysis. 
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