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1. Introduction 

 

Supercritical CO2 cycle (S-CO2 Cycle) is a closed 

Brayton cycle which uses supercritical CO2 as working 

fluid. CO2 shows abrupt change in thermo-physical 

properties near the critical point. The S-CO2 power cycle 

utilizes the reduced compression work near the critical 

point to increase the efficiency.  

A S-CO2 cycle has advantages of having high 

efficiency and small component size compared to other 

gas cycles. Considering these aspects, attempts have 

been made to apply S-CO2 cycles for the secondary side 

of nuclear systems, such as sodium-cooled fast reactor 

(SFR).    

Obtaining the cycle with the highest efficiency for a 

given layout at the steady or off-design states is the most 

important steps in the first step of design. In recent years, 

some attempts have been made to apply artificial neural 

network and genetic algorithm for parametric 

optimization of a S-CO2 cycle. [1] These attempts are 

usually successful, but they have some limitations as 

they are based on probability theory. Optimization 

techniques based on a probabilistic method are not easy 

to converge to the desired precision. It may also need too 

much computational resources and time to solve 

problems having more variables, such as a problem with 

off-design control strategy, because the probability 

theory-based methodology generally has an exponential 

complexity in terms of the number of variables. 

In this paper, the authors propose a method to quickly 

analyze the 1st order sensitivity (Jacobian vector) and the 

2nd order sensitivity (Hessian matrix) of the objective 

function using the adjoint method [2] and to optimize S-

CO2 cycle using the calculated sensitivities. The 

proposed methodology can be applied to all kinds of 

cycles. The authors present an example of the cycle 

optimization for the recompression Brayton cycle at the 

SFR condition. The optimization was performed using 

the Levenbert-Marquardt algorithm [3] using Jacobian 

and Hessian obtained via the adjoint method.  
 

2. Methods and results 

 

2.1 S-CO2 Recompression Brayton cycle for SFR 

 

A S-CO2 Recompression Brayton cycle is a highly 

efficient cycle that is composed of not too many 

components. This cycle layout has low temperature 

difference between the inlet and outlet temperature of 

heat receiving section. Since, CO2 does not react with 

sodium violently, this cycle is one of the promising 

candidates for the secondary side of SFR.  

The cycle layout of S-CO2 recompression Brayton 

cycle is shown in Figure 1. 

 

 
Figure 1. S-CO2 Recompression Brayton Cycle 

 

Cycle design parameters for SFR are shown in Table 1. 

 
Table 1. Cycle design parameters 

Layout Recompression Brayton 

System Maximum Pressure 20 MPa 

Turbine Inlet Temperature 505 oC 

Cooler Outlet Temperature 31.3 oC 

Turbine Efficiency 90 % 

Compressor Efficiency 80 % 

Recuperator Effectiveness 95 % 

HTR hot side pressure drop 60 kPa 

HTR cold side pressure drop 30 kPa 

LTR hot side pressure drop 40 kPa 

LTR cold side pressure drop 20 kPa 

Precooler pressure drop 20 kPa 

Heater pressure drop 50 kPa 

Turbine pressure ratio Optimized 

Split ratio Optimized 

 

2.2 Adjoint Method 

 

The easiest way to obtain the sensitivity of a parameter 

of an objective function at single point is to perform 

numerical differentiation while changing all the 

parameters one by one. However, this method requires p 

number of operations for Jacobian, p2 number of 

operations for Hessian calculation. It can be requiring too 

much computational cost. 

Adjoint method is the way to calculates the sensitivity 

by solving a duality problem, without calculating the 

problem directly. This chapter introduces how to obtain 

Jacobian and Hessian through the adjoint method. 
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2.2.1. Jacobian construction 

 

Define the parameters to analyze the sensitivity 𝒑 , 

dependent variables 𝒙, and the given problem 𝒇(𝒙, 𝒑) as 

shown in Equations (1) to (3). 

 
𝒑 = (𝑝1, 𝑝2, … . . , 𝑝𝑁)

𝑇  … (1) 
𝒙 = (𝑥1, 𝑥2, … . . , 𝑥𝑀)

𝑇  … (2) 

𝒇(𝒙, 𝒑) = (𝑓1(𝒙, 𝒑), 𝑓2(𝒙, 𝒑),… , 𝑓𝑀(𝒙, 𝒑))
𝑇

= (0, 0, … , 0)𝑇  … (3) 
 

When objective function as g. Then the sensitivity is 

defined as Equation (4). 

 
𝑑𝑔

𝑑𝒑
= 𝑔𝒑 + 𝑔𝒙𝒙𝒑…(4) 

 

The 𝒙𝒑  term requires a calculation of p times in a 

direct numerical difference method. This may require 

excessive computational cost. However, as the 

sensitivity vector of the parameter of defined 𝒇 is always 

0,  𝒙𝒑 can be calculated without additional computation. 

(See Equation (5)) 

 
𝑑𝒇

𝑑𝒑
= (

𝑑𝒇

𝑑𝑝1
,
𝑑𝒇

𝑑𝑝2
, … ,

𝑑𝒇

𝑑𝑝𝑁
) = 0 

𝑑𝒇

𝑑𝑝𝑖
= 

𝜕𝒇

𝜕𝑝𝑖
+∑(

𝜕𝒇

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑝𝑗
)

𝑗

 

∴  
𝑑𝒇

𝑑𝒑
= 𝒇𝒑 + 𝒇𝒙𝒙𝒑 = 𝟎 

𝒙𝒑 = −𝒇𝒙
−𝟏𝒇𝒑…(5) 

 

Substituting Equation (5) into Equation (4) yields 

Equation (6). 

 
𝑑𝑔

𝑑𝒑
= 𝑔𝒑 + 𝑔𝒙𝒙𝒑 = 𝑔𝒑 − 𝑔𝒙(𝒇𝒙

−𝟏𝒇𝒑) =  𝑔𝒑 − (𝑔𝒙𝒇𝒙
−𝟏)𝒇𝒑

= 𝑔𝒑 − 𝜆
𝑇𝒇𝒑…(6) 

𝑤ℎ𝑒𝑛    𝒇𝒙
𝑻𝜆 = 𝑔𝒙

𝑇  
 

This is the adjoint method. 

 

2.2.2. Hessian construction 

 

Under the same conditions as Equations (1)~(3), the 

Hessian matrix for object function g is defined as 

Equation (7). 

 

𝑯 = (
𝑑

𝑑𝑝1
(
𝑑𝑔

𝑑𝒑
)
𝑇

,
𝑑

𝑑𝑝2
(
𝑑𝑔

𝑑𝒑
)
𝑇

, … ,
𝑑

𝑑𝑝𝑁
(
𝑑𝑔

𝑑𝒑
)
𝑇

) … (7) 

 

In a similar way as 2.2.1, predefined hessian matrix 

can be written as equation (8) without calculating 

computationally complex term. 

 

 

 

 

 

𝑯 = 𝑔𝒑𝒑 − 𝜆1
𝑇𝒇𝒑 − 𝒇𝒑

𝑻𝜆1 − 𝜆3
𝑇𝒇𝒑 

 +

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝜆0

𝑇

{
 
 

 
 

𝜕

𝜕𝑝1
(𝒇𝒑) +∑

𝜕𝒇𝒑

𝜕𝑥𝑖
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𝑇
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⋮
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)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

…(8) 

 

2.3 Levenberg-Marquardt algorithm 

 

To apply the calculated sensitivity to the optimization, 

an appropriate optimization methodology is needed. The 

Levenberg-Marquardt algorithm [3] (also known as the 

damped least-square method) was used in this study.  

The gradient descent method, which is the general 1st 

order optimization scheme and the Gauss-Newton 

method, which is general the 2nd order scheme, are given 

by Equations (9) ~ (10). 

 
Gradient Descent Method:  𝒑𝒌+𝟏 = 𝒑𝒌 −  𝜆 𝐽 … (9) 

Gauss − Newton Method:  𝒑𝒌+𝟏 = 𝒑𝒌 − 𝐻
−1 𝐽𝑇  … (10) 

 

The gradient descent method stably converges, but it 

may require too many calculations. The Gauss-Newton 

method quickly finds the optimal point. However, 

Gauss-Netwon method can be unstable if the starting 

point is misplaced. The Levenberg-Marquardt algorithm, 

is a method that uses the Newton method at a point far 

from the optimal point, and gives damping near the 

optimal point to switch to the Gradient descent method 

smoothly. This method combines advantages of two 

methods. When the damping coefficient is defined as μ, 

the Levenbert-Marquardt algorithm is shown in Equation 

(11). 

 
𝒑𝒌+𝟏 = 𝒑𝒌 − [𝐻 + 𝜇 ∗ 𝑑𝑖𝑎𝑔(𝐻)]

−1 𝐽𝑇  … (11) 
 

If the result of 𝒑𝒌+𝟏 is not better or even worse than 

the result computed at 𝒑𝒌, the calculation returns to kth 

iteration without further sensitivity analysis, then assign 

larger 𝜇  and compute 𝒑𝒌+𝟏′  until the value become 

better that of the kth iteration. In this process, the larger 

the damping coefficient is, the more the behavior of 

Equation (11) becomes similar to that of Equation (9). 

On the contrary, the smaller 𝜇 is, the more the behavior 

of Equation (11) resembles Equation (10). 

 

  



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 17-18, 2017 

2.4 Sensitivity Analysis Result 

 
At the calculated optimal point, sensitivity of whole 

design parameters was calculated. Analyzed parameters 

list and their sensitivity are shown in Table 2. The unit of 

sensitivities is differences of efficiency per 1 percent 

point changes of each parameter. Calculation did in 

general PC condition. 

The time consumption for calculating those 14 

parameters’ sensitivity is ~0.3 sec at PC. This result is 42 

times faster than traditional direct numerical differences 

method. For Hessian matrix calculation, the developed 

method consumes 6.8 sec. This is more than 100 times 

faster than direct numerical difference method. 

 
Table 2. Sensitivity of design parameters 

 

2.5 Optimization Result 

 

Based on the developed fast sensitivity analysis, 

sensitivity based optimization was performed. In the 1E-

06 precision level, the optimization was finished within 

6 times of sensitivity analysis. To obtain the same precise 

solution, traditional brute-force algorithm or genetic 

algorithm may need physically impossible time.  

By the Jacobian and Hessian sensitivities described 

from section 2.2, the optimized result of S-CO2 

Recompression Brayton cycle is shown in Figure 2. 

Validation for optimized point also progressed. Points 

of each iterative calculation and response surface for 

recompression Brayton cycle is obtained and shown in 

Figure 3. This result shows that the obtained design point 

is actually an optimum point.  

 

 
Figure 2. Optimization result 

 
Figure 3. Points of each iterative calculation and response 

surface for recompression Brayton cycle 

  

  Parameters Value 
Sensitivity 

(D/%.) 

System 

Maximum 
Temperature (oC) 

505 2.49E-03 

Maximum Pressure 

(kPa) 
20000 1.05E-03 

Minimum 

Temperature (oC) 
31.3 -7.73E-04 

Turbine Eff (-) 0.9 3.56E-03 

Main 
compressor 

Eff (-) 0.8 7.74E-04 

Re 
compressor 

Eff (-) 0.8 6.87E-04 

Cooler 
Pressure drop 

(kPa) 
20 -3.12E-06 

HTR 

Eff (-) 0.95 1.32E-03 

Cold side presure 
drop (kPa) 

60 -1.18E-05 

Hot side presure 
drop (kPa) 

30 -1.49E-05 

LTR 

Eff (-) 0.95 2.27E-03 

Cold side presure 
drop (kPa) 

40 -5.61E-06 

Hot side presure 

drop (kPa) 
20 -9.45E-06 

IHX 
Pressure drop 

(kPa) 
50 -9.80E-06 
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3. Conclusions 

 

This study suggested the adjoint sensitivity analysis 

and optimization process of S-CO2 recompression 

Brayton cycle for SFR application. Developed 

methodology showed the ability to obtain optimal point 

with short computational time and high precision. In the 

view point of sensitivity analysis, the suggested adjoint 

based sensitivity analysis methods are 42 times faster for 

the 1st order Jacobian analysis and more than 100 times 

faster for the 2nd order Hessian analysis. This fast 

sensitivity analysis is applied to the cycle optimization. 

With the adjoint sensitivity analysis, the authors can 

optimize given cycle layout with high precision and low 

computational cost. If the same optimization problem is 

solved with a traditional method, it would be very 

demanding in terms of computational resources. 

Another strong point of the suggested methodology is 

the computational resource independence of the number 

of parameters to be optimized. It shows the possibility to 

apply for the optimization of an off-design control 

strategy problem, which is nearly impossible to solve 

precisely because of the large number of control 

parameters. 
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