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1. Introduction

Supercritical CO; cycle (S-CO; Cycle) is a closed
Brayton cycle which uses supercritical CO, as working
fluid. CO, shows abrupt change in thermo-physical
properties near the critical point. The S-CO, power cycle
utilizes the reduced compression work near the critical
point to increase the efficiency.

A S-CO; cycle has advantages of having high
efficiency and small component size compared to other
gas cycles. Considering these aspects, attempts have
been made to apply S-CO- cycles for the secondary side
of nuclear systems, such as sodium-cooled fast reactor
(SFR).

Obtaining the cycle with the highest efficiency for a
given layout at the steady or off-design states is the most
important steps in the first step of design. In recent years,
some attempts have been made to apply artificial neural
network and genetic algorithm for parametric
optimization of a S-CO, cycle. [1] These attempts are
usually successful, but they have some limitations as
they are based on probability theory. Optimization
techniques based on a probabilistic method are not easy
to converge to the desired precision. It may also need too
much computational resources and time to solve
problems having more variables, such as a problem with
off-design control strategy, because the probability
theory-based methodology generally has an exponential
complexity in terms of the number of variables.

In this paper, the authors propose a method to quickly
analyze the 1st order sensitivity (Jacobian vector) and the
2nd order sensitivity (Hessian matrix) of the objective
function using the adjoint method [2] and to optimize S-
CO, cycle using the calculated sensitivities. The
proposed methodology can be applied to all kinds of
cycles. The authors present an example of the cycle
optimization for the recompression Brayton cycle at the
SFR condition. The optimization was performed using
the Levenbert-Marquardt algorithm [3] using Jacobian
and Hessian obtained via the adjoint method.

2. Methods and results
2.1 S-CO, Recompression Brayton cycle for SFR

A S-CO2 Recompression Brayton cycle is a highly
efficient cycle that is composed of not too many
components. This cycle layout has low temperature
difference between the inlet and outlet temperature of
heat receiving section. Since, CO; does not react with

sodium violently, this cycle is one of the promising
candidates for the secondary side of SFR.

The cycle layout of S-CO, recompression Brayton
cycle is shown in Figure 1.
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Figure 1. S-CO2 Recompression Brayton Cycle

Cycle design parameters for SFR are shown in Table 1.

Table 1. Cycle design parameters

Layout Recompression Brayton
System Maximum Pressure 20 MPa
Turbine Inlet Temperature 505 °C
Cooler Outlet Temperature 31.3 °C
Turbine Efficiency 90 %
Compressor Efficiency 80 %
Recuperator Effectiveness 95 %
HTR hot side pressure drop 60 kPa
HTR cold side pressure drop 30 kPa
LTR hot side pressure drop 40 kPa
LTR cold side pressure drop 20 kPa
Precooler pressure drop 20 kPa
Heater pressure drop 50 kPa
Turbine pressure ratio Optimized
Split ratio Optimized

2.2 Adjoint Method

The easiest way to obtain the sensitivity of a parameter
of an objective function at single point is to perform
numerical differentiation while changing all the
parameters one by one. However, this method requires p
number of operations for Jacobian, p? number of
operations for Hessian calculation. It can be requiring too
much computational cost.

Adjoint method is the way to calculates the sensitivity
by solving a duality problem, without calculating the
problem directly. This chapter introduces how to obtain
Jacobian and Hessian through the adjoint method.
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2.2.1. Jacobian construction

Define the parameters to analyze the sensitivity p,
dependent variables x, and the given problem f(x,p) as
shown in Equations (1) to (3).

p=@up2 pn)” (D)
x=(x1, %3, ., )T . (2) .
fxp) = (A p), L p), ., fu(x,p))
=(0,0,..,00 ...(3)

When objective function as g. Then the sensitivity is
defined as Equation (4).

dg
@ =gp + GuxXp ... (4)

The x, term requires a calculation of p times in a
direct numerical difference method. This may require
excessive computational cost. However, as the
sensitivity vector of the parameter of defined f is always
0, x, can be calculated without additional computation.
(See Equation (5))
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Substituting Equation (5) into Equation (4) yields
Equation (6).
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This is the adjoint method.
2.2.2. Hessian construction
Under the same conditions as Equations (1)~(3), the

Hessian matrix for object function g is defined as
Equation (7).
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In a similar way as 2.2.1, predefined hessian matrix
can be written as equation (8) without calculating
computationally complex term.
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2.3 Levenberg-Marquardt algorithm
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To apply the calculated sensitivity to the optimization,
an appropriate optimization methodology is needed. The
Levenberg-Marquardt algorithm [3] (also known as the
damped least-square method) was used in this study.

The gradient descent method, which is the general 1st
order optimization scheme and the Gauss-Newton
method, which is general the 2nd order scheme, are given
by Equations (9) ~ (10).

Gradient Descent Method: pyiq =pr— 4J ... (9)
Gauss — Newton Method: pyq =pr— H1JT ...(10)

The gradient descent method stably converges, but it
may require too many calculations. The Gauss-Newton
method quickly finds the optimal point. However,
Gauss-Netwon method can be unstable if the starting
point is misplaced. The Levenberg-Marquardt algorithm,
is a method that uses the Newton method at a point far
from the optimal point, and gives damping near the
optimal point to switch to the Gradient descent method
smoothly. This method combines advantages of two
methods. When the damping coefficient is defined as g,
the Levenbert-Marquardt algorithm is shown in Equation
(12).

Pik+1 = Pk — [H +p*diag(H)]' )" ... (11)

If the result of p,.4 is not better or even worse than
the result computed at py, the calculation returns to kth
iteration without further sensitivity analysis, then assign
larger u and compute pg,q" until the value become
better that of the kth iteration. In this process, the larger
the damping coefficient is, the more the behavior of
Equation (11) becomes similar to that of Equation (9).
On the contrary, the smaller p is, the more the behavior
of Equation (11) resembles Equation (10).
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2.4 Sensitivity Analysis Result

At the calculated optimal point, sensitivity of whole
design parameters was calculated. Analyzed parameters
list and their sensitivity are shown in Table 2. The unit of
sensitivities is differences of efficiency per 1 percent
point changes of each parameter. Calculation did in
general PC condition.

The time consumption for calculating those 14
parameters’ sensitivity is ~0.3 sec at PC. This result is 42
times faster than traditional direct numerical differences
method. For Hessian matrix calculation, the developed
method consumes 6.8 sec. This is more than 100 times
faster than direct numerical difference method.

Table 2. Sensitivity of design parameters

Sensitivity
Parameters Value (/%)
Maximum
Temperature (oC) 505 2.49E-03
Maximum Pressure
System (kPa) 20000 1.05E-03
Minimum
Temperature (0C) 31.3 -7.73E-04
Turbine Eff (-) 0.9 3.56E-03
Main
compressor Eff () 08 7.74E-04
o Bff () 038 6.87E-04
compressor . .
Pressure drop
Cooler (kPa) 20 -3.12E-06
BIf () 0.95 1.32E-03
Cold side presure
HTR drop (kPa) 60 -1.18E-05
Hot side presure
drop (kPa) 30 -1.49E-05
Eff () 0.95 2.27E-03
Cold side presure
LR drop (kPa) 40 -5.61E-06
Hot side presure
drop (kPa) 20 -9.45E-06
Pressure drop
IHX (kPa) 50 -9.80E-06

2.5 Optimization Result

Based on the developed fast sensitivity analysis,
sensitivity based optimization was performed. In the 1E-
06 precision level, the optimization was finished within
6 times of sensitivity analysis. To obtain the same precise
solution, traditional brute-force algorithm or genetic
algorithm may need physically impossible time.

By the Jacobian and Hessian sensitivities described
from section 2.2, the optimized result of S-CO;
Recompression Brayton cycle is shown in Figure 2.

Validation for optimized point also progressed. Points
of each iterative calculation and response surface for
recompression Brayton cycle is obtained and shown in

Figure 3. This result shows that the obtained design point
is actually an optimum point.
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Figure 2. Optimization result
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Figure 3. Points of each iterative calculation and response
surface for recompression Brayton cycle
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3. Conclusions

This study suggested the adjoint sensitivity analysis
and optimization process of S-CO, recompression
Brayton cycle for SFR application. Developed
methodology showed the ability to obtain optimal point
with short computational time and high precision. In the
view point of sensitivity analysis, the suggested adjoint
based sensitivity analysis methods are 42 times faster for
the 1% order Jacobian analysis and more than 100 times
faster for the 2" order Hessian analysis. This fast
sensitivity analysis is applied to the cycle optimization.
With the adjoint sensitivity analysis, the authors can
optimize given cycle layout with high precision and low
computational cost. If the same optimization problem is
solved with a traditional method, it would be very
demanding in terms of computational resources.

Another strong point of the suggested methodology is
the computational resource independence of the number
of parameters to be optimized. It shows the possibility to
apply for the optimization of an off-design control
strategy problem, which is nearly impossible to solve
precisely because of the large number of control
parameters.

REFERENCES

[1] Wang, Jiangfeng, et al. "Parametric optimization
design for supercritical CO 2 power cycle using genetic
algorithm and artificial neural network." Applied
Energy 87.4 (2010): 1317-1324.

[2] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint
sensitivity analysis for differentialalgebraic equations:
The adjoint DAE system and its numerical solution,”
SIAM J. Sci. Comput., vol. 24, no. 3, pp. 1076-1089,
2003

[3] C. T. Kelley, “Iterative Methods for Optimization”,
SIAM Frontiers in Applied Mathematics, no 18, 1999,
ISBN 0-89871-433-8.



