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1. Introduction 
 

One of the challenges for the whole-core transport 

calculation is its slow source convergence. In the 

previous study of deterministic method of characteristics 

(MOC) calculation, the coarse-mesh finite difference 

(CMFD) method [1] was applied to accelerate source 

convergence of the high-order transport solution by 

using the low-order CMFD solution. However, the 

CMFD acceleration method diverges for optically thick 

coarse-mesh as shown in Fourier convergence analysis, 

while the partial current-based coarse-mesh finite 

difference (p-CMFD) method [2-4] is unconditionally 

stable. In the continuous-energy Monte Carlo (MC) 

simulation, the p-CMFD acceleration method was 

applied to reduce the number of inactive iterations (i.e., 

cycles) for the source convergence [5]. The p-CMFD 

acceleration method was also combined with the fission 

and surface source (FSS) iteration method, which is a 

domain decomposition method, and tested in continuous-

energy two-dimensional (2-D) and three-dimensional (3-

D) problems [6-8]. It was also used in a three-

dimensional (3-D) continuous-energy whole-core 

problem in the context of the transient MC simulations 

[9,10]. 

In the previous study [11] of the multigroup MC 

simulation, it was shown in 1-D and 2-D whole-core 

problems that the feedback of the CMFD solution not 

only accelerated MC fission source distributions (FSDs) 

during inactive iterations, but also led to smaller real 

standard deviations in MC tallies during active iterations, 

compared to the conventional power iteration. Recently, 

the CMFD feedback for the continuous-energy MC 

simulation [12] leads to around 1.5 times smaller real 

standard deviations of MC tallies, while the results are 

restricted to a one-dimensional homogeneous problem. 

More recently, in Ref. [13], the CMFD method for the 

continuous-energy MC simulation has been applied to 

only inactive iterations on a 3-D whole-core problem.  

In this paper, the p-CMFD feedback in the continuous-

energy MC simulation is investigated for the real 

variance reduction of local tallies; radial pin powers and 

assembly powers in a 3-D whole-core problem. We have 

also refined the tally algorithm to reduce stochastic errors 

in scattering reaction rates for the p-CMFD parameters 

(homogenized cross sections and leakage correction 

factors). The numerical results show that the p-CMFD 

feedback leads to 1.4 times and 1.9 times smaller 

averages of real standard deviations in radial pin powers 

and assembly powers, respectively, at the optimized 

accumulation condition for the p-CMFD parameters [14], 

compared to the conventional power iteration. 

2. Methodology 

 
2.1. MC simulation with p-CMFD Feedback  

 
Figure 1 shows a schematic flow chart for the MC 

simulation with the p-CMFD feedback (MC/p-CMFD). 

To stabilize the fluctuations of FSDs of the MC/p-CMFD, 

the accumulation scheme 2 in Ref. [14] is applied. We 

skip the accumulation of the coarse-mesh MC tallies 

(flux, reaction rates, and partial currents) for the p-

CMFD parameters (homogenized cross sections and 

leakage correction factors) during the initial Lskip inactive 

iterations for the fast convergence of FSDs. Then, for the 

remaining entire iterations; both inactive and active 

iterations, the coarse-mesh MC tallies are enqueued in 

the first-in-first-out (FIFO) queue storage. The FIFO 

queue length L means that the FIFO queue storage 

contains the MC tallies of the previous L−1 iterations. 

When the FIFO queue storage is full, the oldest MC 

tallies are dequeued and the newest MC tallies are 

enqueued. The detailed description of the MC/p-CMFD 

is given in Refs. [5,7]. 

 

 
Fig. 1. Schematic flow chart for the MC/p-CMFD; 

( )

,

l

MC iS  is the 

number of sampled MC fission sources in the coarse-mesh cell 

i, M is the nominal source size, Linactive is the number of inactive 

iterations, and Lactive is the number of active iterations. 
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2.2. Tally of Scattering Reaction Rate 

 

The implicit capture and the Russian roulette are 

routinely used in the continuous-energy MC code (e.g., 

MCNP5 [15]) to increase the efficiency of the MC 

simulation. 

In the previous studies of the MC/p-CMFD [5-10], the 

scattering reaction rates were tallied after the Russian 

roulette, as line #14 in Fig. 2. In this case, we lose the 

exact weight of the scattered particle, which may result 

in the significant increase of stochastic errors in the 

scattering reaction rates. Therefore, we move line #14 to 

line #4 in Fig. 2, so that the scattering reaction rate is 

tallied with the weight before the Russian roulette. 
 

 
Fig. 2. Collision subroutine in the MC simulation using the 

implicit capture and the Russian roulette; Fscatter is a variable 

to tally scattering reaction rate. 
 

3. Numerical Results 
 

Figure 3 shows the configurations of a 3-D 

continuous-energy whole-core test problem, where the 

material densities and compositions are taken from 

BEAVRS [16]. The MC simulations in this paper are 

performed by the in-house 3-D continuous-energy MC 

code, McBOX [17], using the ENDF/B-VII.0 library. 
 

 
Fig. 3. Configurations of 3-D continuous-energy whole-core 

test problem. 
 

The calculational conditions of a single batch run for 

the MC simulation are 1,000,000 histories per iteration 

and 400 active iterations; The number of inactive 

iterations is set as 60 for the MC/p-CMFD, while it is set 

as 400 for the conventional power iteration. Note that the 

number of inactive iterations used is not the optimized 

value but set to be large enough to ensure the fission 

source convergence. 

For the p-CMFD calculation, the coarse-mesh cell is 

set as a single assembly in x-y plane with 20 divisions in 

z-axis. It is noted that when the coarse-mesh flux is 1010 

times smaller than the maximum coarse-mesh flux (e.g., 

peripheral regions of the large whole-core problem, or 

rodded regions), the MC tallies for this coarse-mesh cell 

are not reliable due to the too large stochastic errors. 

Therefore, we treat this type of the coarse-mesh cell as a 

vacuum region in the p-CMFD calculation and the 

weights of MC FSDs in this coarse-mesh cell are not 

corrected. We skip the accumulation of coarse-mesh MC 

tallies for the p-CMFD parameters during the initial 40 

iterations. 

To investigate the effect of the FIFO queue length (L) 

in the MC/p-CMFD on the real variance, 50 independent 

batch runs are performed for several test cases with 

varying L as 0, 1, 3, 5, 10, 20, 40 , 160, and 420; The case 

“L = 0” means the conventional power iteration. For each 

test case, the real standard deviation ( real ), the apparent 

standard deviation ( app ), and the standard deviation 

estimated by the history-based batch (HB) method ( HB ) 

[18] are obtained for radial pin powers and assembly 

powers. 

Figure 4 shows the source convergence of the MC/p-

CMFD with several queue lengths by Shannon entropy 

[19], where the Shannon entropy for each test case is 

obtained from averaged values of 50 independent batch 

runs. Note that the reference Shannon entropy is obtained 

from the conventional power iteration using 20,000,000 

histories per iteration. Compared to the conventional 

power iteration, the MC/p-CMFD shows the faster 

convergence of the FSDs. It is also shown that the 

converged Shannon entropy of the MC/p-CMFD is 

closer to the converged reference Shannon entropy, 

compared to that of the conventional power iteration. 

This means that the converged FSDs of the MC/p-CMFD 

are more accurate than those of the conventional power 

iteration for the same number of histories (1,000,000) per 

iteration. 
 

 
Fig. 4. Comparisons of averaged Shannon entropies of test 

cases (L = 0, 1, 5, 40, and 420) and reference Shannon entropy. 
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Figures 5 and 6 show, respectively,  radial pin-power 

and assembly-power distributions and their three 

standard deviations ( real , app , and HB ) distributions 

for test cases. For L = 1 and 5, the real  distributions of 

the MC/p-CMFD are smaller than the those of the 

conventional power iteration. However, when L = 420, 

the real  distributions become larger than those of the 

conventional power iteration.  
 

 
Fig. 5. Radial pin powers and their three standard deviations 

( , ,  and real app HB   ) for test cases  (L = 0, 1, 5, and 420). 

 

 
Fig. 6. Radial assembly powers and their three standard 

deviations ( , ,  and real app HB   ) for test cases  (L = 0, 1, 5, and 

420). 
 

To investigate the effects of the FIFO queue length on 

the real variance more clearly, the average of the real 

standard deviations of local tallies ( real ) is obtained for 

each test case. Similarly to real , the average of apparent 

standard deviations ( app ) and the average of standard 

deviations estimated by the HB method ( HB ) are also 

obtained. 

Figure 7 shows the ratios of real  in the MC/p-CMFD 

to real  in the conventional power iteration for the 

various queue lengths. As the queue length increases 

from 1 to 5, the ratio decreases, while from 10 to 420, the 

ratio increases. Thus, there appears to be an optimum 

queue length L = 5 (for this problem). Figures 8 and 9 

compare the three averages of standard deviations 

( ,  ,  real app HB   ) of radial pin powers and assembly 

powers, respectively, for the various queue lengths. It is 

shown that the HB method quite accurately estimate the 

real variance for the conventional power iteration, while 

the HB method fails to estimate the real variance when 

the p-CMFD feedback is used. This is due to the fact that 

the p-CMFD feedback introduces correlation among the 

history-based batches. 

 

 
Fig. 7. The ratios of real  in MC/p-CMFD to real  in the 

conventional power iteration for various FIFO queue lengths; 

0, 1, 3, 5, 10, 20, 40 , 160, and 420.  

 

 
Fig. 8. Comparisons of three averages of standard deviations 

( real , app , and HB ) of radial pin powers. 

 

 
Fig. 9. Comparisons of three averages of standard deviations 

( real , app , and HB ) of radial assembly powers. 
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4. Summary and Conclusions 

 

In this paper, the continuous-energy MC simulation 

embedding the p-CMFD feedback was investigated for 

the real variance reduction in local tallies in the 3-D 

whole-core problem. In contrast to the previous 

implementation, we also refined the tally algorithm of 

the scattering reaction rates for the p-CMFD parameters. 

The numerical results show that the p-CMFD feedback 

leads to more accurate FSDs and smaller real standard 

deviations (with optimum queue length L = 5 for the test 

problem), compared to the conventional power iteration. 

Note that the real variance consists of the variance 

term from a single iteration and the inter-iteration 

covariance terms. In the MC/p-CMFD, between two 

successive MC iterations we perform a sufficient number 

of power iterations in the low-order p-CMFD calculation 

and the resulting FSDs are used in the next MC iteration. 

Thus, the real variance of the MC tally is reduced due to 

the smaller covariance among iterations. 

For a small queue length (L = 1, 3, or 5), the 

accumulation of the coarse-mesh MC tallies is desirable 

to reduce both the stochastic errors and the biases from 

the ratio-type estimator [20] in the p-CMFD parameters. 

However, for a long queue length (L = 40, 160, or 420), 

the inter-iteration correlations increase in the p-CMFD 

solutions. Therefore, we have to use the optimum queue 

length for the p-CMFD feedback for the real variance 

reduction during active iterations. 
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