

Feasibility Study of Gamma CT Based on Compton Kinematics

2017.05.18

<u>김재현</u>·김영수·김찬형*

한양대학교 원자력공학과

HANYANG UNIVERSITY

2017 원자력학회 춘계학술발표회(17.05.17 - 17.05.19)

Introduction

Radioactive waste disposal

- **Considerable radioactive waste** occur in the decommissioning process.
- There is a need to estimate the location and activity of the hot spots in the waste drum to reduce the expenses of the decommissioning.

Hot spot imaging system: Compton camera

Large-area Compton camera

- High efficiency
- Able to get 3-D hot spots images by single measurement

RADIOACTIV

Necessity of attenuation map information

Hot spots imaging

Compton camera

- For the image reconstruction and activity estimation of the hot spots, it is necessary to get the **attenuation map in the waste drum**.

Industrial gamma CT system for attenuation map

Attenuation map information

Gamma CT

- Inner attenuation map information can be obtained by an additional industrial gamma CT system.
- In using gamma CT system, the scattered events and other gamma rays events may deteriorate the image quality.

Industrial gamma CT system for attenuation map

Attenuation map information

Gamma CT

- For this reason, in order to get sufficient image quality, it is important to record the unscattered events, and to block the scattered events.
- Existing industrial gamma CT systems generally use mechanical collimation method or electronic collimation method.

Industrial gamma CT system – mechanical based

Attenuation map information

Gamma CT

 Mechanical-collimation-based Gamma CT system uses a mechanical collimator to record the unscattered gamma rays events, and to block the scattered events and other gamma rays events.

Industrial gamma CT system – mechanical based

Attenuation map information

Gamma CT

- Mechanical-collimation-based Gamma CT system is generally bulky due to their mechanical collimator, and it should be changed depending on the structure.
- The collimator also has a limitation that cannot block the high-energy scattered gamma rays.

Industrial gamma CT system – electronic based

Attenuation map information

Gamma CT

 Electronic-collimation-based Gamma CT system can select the unscattered events and block the scattered events using the energy window.

Industrial gamma CT system – electronic based

Attenuation map information

Gamma CT

- It is necessary to use radiation detectors which has excellent energy resolution.
- It also has a limitation that cannot discriminate other gamma rays events which have same energy with the outer gamma ray source.

Industrial gamma CT system – limitation

- It is inefficient to have an additional gamma CT system with Compton camera to get the **attenuation map in the waste drum**.

Gamma CT method based on Compton kinematics

Hot spots imaging

Attenuation map information

- <u>Compton CT</u>: gamma CT method based on Compton kinematics.
- We can record the unscattered events, and
 block the scattered events using Compton
 CT without any additional systems.

Research goal

Principle of Compton CT

Principle of Compton CT

θ_g: Geometrical angle (by interaction position)<math>
θ_c: Compton cone angle (by deposited energy)

Principle of Compton CT – continued

$\underline{\theta}_{q}$: Geometrical angle (calculated by position information)

Principle of Compton CT – continued

<u>θ_c: Compton cone angle (calculated by energy information)</u>

Principle of Compton CT – continued

Scattering Angle Difference (SAD)

- Thus, **SAD will be almost zero for the unscattered events**, not for the scattered or other gamma-rays events.
- Using the SAD window, we can discriminate the unscattered events among the unwished events such as the scattered or other gamma rays events.

Feasibility study of Compton CT

Geant4 simulation: detector modeling

- Geant4 (version 10.03)
- Scintillation detector: monolithic NaI(TI) scintillator (Scintititech, MA, USA) + square-type PMTs array
- Scintillator dimension: 105 cm (W) × 27 cm (H)
 - Thickness: 2 cm for first detector, 3 cm for second detector
- Distance between the first detector and the second detector: 25 cm

Geant4 simulation: detector modeling

- Energy resolution and spatial resolution were applied in Geant4.
 - Energy resolution: 7.62% (@662 keV)
 - Spatial resolution: 5 mm FWHM
- G4EMLivermorePhyisics was used for physics library.

Geant4 simulation: phantom modeling

- <u>*IAEA standard phantom for industrial gamma CT system</u>
- Dimension: 40 cm (D) \times 80 cm (H)
- Density: 0.93 g/cm³ for polypropylene and 7.8 g/cm³ for Fe

***Ref**: TECDOC, IAEA. "1589, Industrial Process Gamma Tomography, Final Report of a Coordinated Research Project 2003–2007." *International Atomic Energy Agency, Austria* (2008).

Source modeling & simulation condition

- Source: fan-shaped 1.33 MeV gamma rays (Co-60, 20 mCi)
- The projection data was acquired at the 360 angular positions over 360°.
- The acquisition time was assumed to be **1 second** for each projection.

Image reconstruction algorithm

- Filtered back projection (FBP) was used to reconstruct CT image.
- Ram-Lak filter was applied in the FBP.
- Image reconstruction was carried out using MATLAB[®].

Feasibility study of Compton CT – results

- For the unscattered gamma events, it was confirmed that SAD distribution converges on 0°.
- The result shows that Compton CT can give us an attenuation map in the waste drum.

Feasibility study of Compton CT – results

CT images for gamma rays of various energy

Gamma CT modeling for comparison study

- For the comparison, gamma CT systems were modeled; mechanical and electronic collimation based NaI(TI) scintillator coupled to circular PMT.
- Detector dimension: 0.5 (D) \times 0.5 (T) inch, 1 (D) \times 1 (T) inch
- Collimator: Pb collimator, 5 mm (D) hole × 50 mm (T) / electronic

Comparison study with gamma CT – results

Comparison study with gamma CT – results

Feasibility study of Compton CT; comparison study

Existence of inner source in the phantom

- Inner source: Co-60
 (1.33 MeV gamma)
- (0, -10 cm, 0) for phantom
- Activity ratio between the external source and inner source;
 - 10:1 (6.4 mCi: 0.64 mCi)
 - 1 second/1 projection
- Gamma CT

Mechanical collimation

Feasibility study of Compton CT – results

Existence of inner source in the phantom

Compton CT

Gamma CT (mechanical collimation)

Gamma CT (electronic collimation)

Conclusion

Conclusion

- In the present research, we proposed a new gamma CT method,
 Compton CT, and estimated the feasibility of the Compton CT using Monte Carlo simulation.
- It was confirmed that we can get the attenuation map distribution in the waste drum using Compton CT.
- The results show that Compton CT can effectively block the scattered events and other gamma events better than the gamma CT system.
- Large-area Compton camera system will be able to obtain the hot spot image as well as attenuation map distribution in the waste drum, without any additional equipment.

Thank you