
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2017

The path analysis algorithm for a 2D map configuration of Physical Protection System

Sung Soon Jang

Physical Protection Devision, 1418 Yuseong-daero, Yuseong-gu, Daejeon 34101, Korea Institute of Nuclear
Nonproliferation and Control

1. Introduction

A physical protection system (PPS) integrates

people, procedures, and equipment for the protection of
assets against theft, sabotage or other malevolent
attacks. Even when a strong PPS is provided, without
regular assessments, a PPS might waste valuable
resources on unnecessary protection or, worse yet, fail
to protect the asset.

In evaluating the effectiveness of a PPS, there are
two main perspectives. The first addresses a path
analysis of potential outside attacks and the second
deals with neutralization. The concern in this abstract
is with the path analysis.

Due to the complexity of protection systems, a path
analysis usually requires computer modeling
techniques. A path analysis determines the ordered
series of a potential adversary’s actions or the
adversary path. The analysis evaluates the probability
that a response force will interrupt this adversary
before his/her task is completed. The Estimation of
Adversary Sequence Interruption (EASI) calculates the
probability of interruption for a pre-determined
adversary path. EASI was developed in 1960. For a
multi-path analysis, the Systematic Analysis of
Vulnerability to Intrusion (SAVI) was developed in
1980. The Analytic System and Software for
Evaluating Safeguards and Security (ASSESS) is an
enhanced version of SAVI with additional insider
analysis and neutralization modules. Also, computer-
based combat simulators have been developed and are
used for the assessment of physical protection system.

Figure 1: An adversary path on the 2D grid
representation of physical protection system

This abstract addresses a path analysis for the 2D-

square grid representation of physical protection system
for a better representation, and proves the correctness
proof of algorithm.

2. Timely Detection of a PPS

Weather a path is successful or not is measured by

the Probability of Interruption (PI). The probability of
interruption means the probability that security system
detects adversary in time so to response/interrupt the
adversary before his completion of the task.

The Timely Detection Model focuses on the
measure PI as the measure of effectiveness of a path.
The figure below depicts the adversary timeline at the
top, indicating the Task Time it takes the adversary to
complete his activities on the path, and also the sensing
opportunities along the path which may cause the
adversary to be detected. Below the adversary timeline
there is a comparison between the PPS Response Time
and the Adversary Task Time Remaining on the path
after first sensing at each possible sensing opportunity.

If PRT (PPS Response Time) < Adversary Task
Time Remaining After First Sensing then the
corresponding sensing opportunity is considered
timely; if this is not the case, then the opportunity is
not timely.

Figure 2: Relationship between the Adversary Timeline
and the Response Timeline

The PI is equivalent to the probability that the
adversary is detected at a timely sensing opportunity.
For the example in Figure 2, the first two sensing
opportunities are timely, so PI = P(Detection at Sensing
Opportunity 1 OR Sensing Opportunity 2). The
Critical Detection Point or CDP is the last sensing

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2017

opportunity on the path that is timely, in this case
Sensing Opportunity 2.

From the adversary’s perspective, their best path
would have the lowest Probability of Interruption over
all paths through the facility. Such a path achieving the
lowest is called the most vulnerable path or MVP. To
determine the MVP, the adversary will start at the end
of the path, minimizing delay over elements and
strategies at these elements, until a CDP is located;
then probability of detection is minimized starting at
the CDP and moving toward the start of the path. The
PI along a path is evaluated as follows.

))(1))...((1))((1(1 21 ki DPDPDPP ----=

where)(iDP is the probability of detection of ith

detector and k is the last detector before CDP.

3. The Algorithm to find the most vulnerable path

Conceptually, the approach for finding the MVP

follows this same sequence:
1. Start at the target, identify the set of grids that

are close enough that the quickest delay to the target is
less than or equal to the PPS Response Time; then

2. Start with the boundary of this set; identify the
minimum probability of detection path from that
boundary to the starting point for the path.

Notice that this algorithm generates the path from
the target node back to the starting node. Both of these
steps are addressed by the A* algorithm presented
below that keeps track of the timeline and switches
from minimizing delay to minimizing detection
through the use of a vector-valued evaluation function
and comparison operator.

Let me write the algorithm in pseudo code. Let us
suppose of the arithmetic operation of cost c as follows.

)','('

'

''

tsumtsumpsumpsumcc

tsumtsumthenpsumpsumif

psumpsumifcc

++=+

<=

<<

Then, the pseudo code is as follows.

4. Correctness of the algorithm

The correctness means that the above algorithm
finds the most vulnerable path, if any. It was proved
that A* algorithm finds the least-cost path. The above
pseudo code is equal to the A* algorithm when the
heuristic value is zero.

Thus, it is enough to show that the cost function is
monotonic increase as a path expansion. This condition
is written as follows.

cost(a path to x) ≤ cost(a path to y through x), where y
is the neighbor of x.

cost(a path to y through x) = cost(a path to x)
 + (-log(1-detect_prob(x,y)), delay_time(x,y))

The detect_prob(x,y) is the detection probability during
the moving from x to y, the real value from 0 to 1.
Therefore, -log(1- detect_prob (x,y) is a positive value
and increases as detect_prob (x,y) increases. The
delay_time(x,y) is the delay time during the moving
from x to y and, thus, a positive real value. Because
positive values are added to the cost, the cost function
is a monotonic increase as a path expansion as follows.

cost(a path to y through x) = cost(a path to x)
 + (-log(1- detect_prob (x,y)), delay_time(x,y))
 ≥ cost(a path to x)

5. Conclusion

In conclusion, I suggest a path analysis algorithm

for the 2D-square grid representation of PPS, and prove
its correctness. The algorithm finds the most
vulnerable path for the given physical protection
system, and would be used in the computer simulator
for the effectiveness evaluation of physical protection
system.

ACKNOWLEDGEMENT

This work was sponsored by funding from the Korea
Foundation of Nuclear Safety, Republic of Korea.

REFERENCES

[1] Mary Lynn Garcia, Vulnerability Assessment of Physical
Protection Systems, Butterworth-Heinemann (2005).

[2] SAVI: Systematic Analysis of Vulnerability to Intrusion,
v1, SAND89-0926, Sandia National Laboratories (1989).

[3] R. A. Al-Ayat et. al., ASSESS update : Current status and
future developments, UCRL-JC-104360, Lawrence
Livermore National Laboratory (1990).

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach 2nd edition, Prentice Hall (2002).

[5]. Sung Soon Jang, et. al, "Development a Vulnerability
Assessment Code for a Physical Protection System: SAPE
", Nuclear Engineering and Technology, v41, n5, p747
(2009).

For all t in target: // from all target
 cost = (0,0)
 push_heap([t], cost)
while heap is not empty:
 (p, c) = pop_heap()
 x = last_position_path(p)
 if reached_offsite(x) : // found the MVP!
 return (p) // exit
 for all y neighbor of x:
 if y is not closed:
 d = (-log(1-detect_prob(x,y)), delay_time(x,y))
 c’ = c + d
 push_heap(add_path(p, y), c’)
 close(y)

