Assessment of Mitigating Strategies using CFVS and CVWM at CANDU Plant under Severe Accident Conditions G. E. Choi^{*}, K. H. Lee, J. Y. Lee FNC Technology Co. Ltd, Heungdeok IT Valley, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, Korea

*Corresponding author: autumn94@fnctech.com

Introduction

***** Background

- Challenge of containment integrity under severe accident
- Gradual increase of containment pressure due to heat removal absence
- Calandria Vessel (CV) failure \rightarrow rapid steam generation
- Mitigation system
 - Containment Filtered Venting System (CFVS)
 - Calandria Vault Water Makeup (CVWM)

Purpose

Establishment of appropriate mitigating strategies to use CFVS and

Analysis Results II

Sensitivity Analyses for CVWM

- Operation of CVWM
 - & Time of CVWM operation
 - No remarkable difference of vented radioactive aerosol mass
 - ... Appropriateness of current mitigating strategies to operate CVWM before CV failure

Sensitivity Analyses for CFVS

Time [hr]

CVWM for reducing fission product releases

Analysis Cases

Accident Sequences

- Scenario: Station Black-Out (SBO)
- Analysis code: MAAP-ISAAC 4.03

Sensitivity Analyses Condition for CVWM

- SBO-NE case: CVWM does not operate (base case).
- SBO-CVF case: CVWM operates 1 hour after the CV failure.
- SBO-CVI case: CVWM operates when the water level of the calandria vault decreases below the top of calandria vault.

Sensitivity Analyses Condition for CFVS

- Vent initiating pressure : 224, 324, 424, 524 kPa(a) * Varying with 6 inch diameter of the vent line
- Vent line size : 6, 8, 10, 12 inch
 - * Varying with 224 kPa(a) vent initiating pressure
- The closure pressure of the CFVS: 150 kPa(a)

Analysis Results I

- Vent line size
 - Behavior of the containment pressure

 \rightarrow strong influence due to the difference in the venting flow rate

Vent initiating pressure

Accident Sequence	Vent Initiating Pressure (kPa(a))	Vent Line Size (inch)	Max. Venting Mass Flow Rate (kg/s)	Vented Radio-active Aerosol Mas (kg)
<section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	224	6	7.7	5.57
		8	12.4	5.77
		10	20.4	4.81
		12	23.2	6.06
	324	б	8.9	6.24
	424	6	9.7	4.50
	524	6	11.4	1.05
SBO-CVF	224	6	7.7	5.57
		8	12.4	5.77
		10	20.4	4.81
		12	23.2	6.18
	324	6	8.9	6.31
	424	6	9.7	4.58
	524	6	11.4	1.05
	224	6	6.1	5.50
		8	10.6	5.68
		10	16.5	4.71
		12	23.2	5.73
	324	6	7.8	5.88
	424	6	9.7	3.61
	524	6	11.4	0.37

- Increase of vent initiating pressure
- \rightarrow delay of venting
- \rightarrow settlement and deposition of suspended particles (i.e. aerosol)
- \rightarrow decrease of vented radioactive aerosol mass
 - .: Advantage by increase of vent initiating pressure

Conclusion

- **CVWM operation in itself and the operation time do not contribute** significantly in reducing the release of fission products.
 - Since the CV failure can cause various severe accident phenomena, current mitigating strategies using CVWM before CV failure is appropriate regardless of the fission products releases.

The vented aerosol mass is not affected by the vent line size strongly.

• Therefore, it can be concluded that the current vent line size are appropriate to mitigate severe accidents.

***** Increase in vent initiating pressure gives positive effects to minimize the total releases of the fission products.

- The current vent initiating pressure of CFVS in Wolsung NPP unit 1 is set to 224 kPa(a), the design pressure for Design Based Accident (DBA).
- Considering that CFVS is severe accident mitigating feature and there are positive effects by increasing the vent initiating pressure, it is required to re-evaluate the current set-point of CFVS operation carefully.

