

이산화우라늄 카라멜 연료를 이용한 수냉각 소형모듈형 원자로심 설계 ^{이시도} 2017. 5.19

목차

1. 개요

2. 집합체 설계

- 판형 집합체 설계 변수
- 선형증배계수 모델
- 집합체 형상, 연소해석 결과
- 3. 최대잉여반응도 제어
 - 가연성 독물질 삽입 전략
 - 노심 형상, 연소해석 결과
- 4. 핵특성 계산
 - MTC, FTC, PPF
- 5. 결론

개요(1/2)

- 판형노심의 장점
 - ✔ 열전달면적 ↑
 - ✓ 낮은 핵연료 온도로 인한 안전성 ↑
 - ✓ 높은 출력밀도
 - ✓ 높은 열적 여유도
 - ✓ 봉상연료 대비 진동, 충격에 강함
 - ✔ 사고시 핵분열생성물 방출 제한
 - ✔ 연료 장전의 이점
- 설계 과정

✓ 선형증배계수 모델을 이용한 집합체 변수 결정
 ✓ 가연성 독물질 삽입을 통한 최대잉여반응도 제어

개요(2/2)

- 판형 SMR 노심 설계 기준요건
 - ✔ 열출력 : 180MWt
 - ✔ 재장전주기 : 4년 이상
 - ✓ 최대잉여반응도 : 3000pcm 이하

Electric power	Reactor power	Thermal efficiency	Operating press	Subcooling @ core exit	Hot leg	Cold leg
>50 MWe	180 MWt	>25 %	155 bar	30 °C	315 °C	285 °C
RV height	No. of fuel assemblies and CEDM	Enrichment	Refueling cycle	Active core height	Core diameter (effective)	Soluble neutron absorber
~25 m	37	< 5 w/o	4 year	2.00 m	1.48 m	No

판형 집합체 설계 변수(1/2)

- 판형노심 집합체 설계
 ✓ 판형 핵연료 집합체 형상은 SHIPPINGPORT2의 SEED1 집합체를 도입
- 판형집합체 모델의 결정 변수

✓ 고정 치수 : 집합체 크기(WH 17X17), 피복재 두께, 십자 블레이드 두께
 ✓ 카라멜의 두께, 집합체 당 판의 개수, 채널의 두께

그림 1. SEED1 집합체 단면

판형 집합체 설계 변수(2/2)

• 전노심 배치와 형상

그림 3. 판형 SMR 전노심 단면도

선형증배계수모델

- 선형증배계수모델
 - ✓ 가연성 독물질이 삽입되어 있지 않은 핵연료의 연소에 따른 증배계 수를 선형으로 근사하여 노심주기를 추정
 ✓ k(t) = a(m)t + k₀, t = ^{1-k₀}/_{a(m)}
 ✓ 주기는 k₀와 a(m) 에 의하여 결정
- 도입 이유

✓ 변수에 따른 서로 다른 집합체 모델이 무수히 많이 존재. 각 집합체 별 전노심 몬테칼로 연소해석을 하는 데에는 많은 시간이 소요. 초 기증배계수와 핵연료의 질량으로 전노심 주기 추정 가능.

• 추정 노심주기 t 값이 최장이 되는 변수를 탐색

선형증배계수모델계산 검정(1/2)

임의의 카라멜을 이용한 선형증배계수 모델 계산 검정
 ✓ 초기증배계수와 핵연료 장전량으로 핵연료 주기 추정

	Case 1	Case 2	Case 3	Case 4	Case 5
카라멜의 두께(cm)	0.4	0.25	0.35	0.45	0.50
핵연료 감속재 비 (핵연료 부피/감속재 부피)	0.94	0.51	0.97	0.83	1.66
핵연료량(g)	82	51	72	93	103
t	316	252	265	398	225

Case 5 < Case 2 < Case 3 < Case 1 < Case 4

선형증배계수모델계산 검정(2/2)

선형증배계수 모델을 이용한 판형노심 설계(1/2)

- 선형증배계수 모델을 이용한 전노심 노심주기 추정
 - ✓ 제한조건 : 카라멜의 두께 (0.1 < h < 0.5)</p>
 - ✓ 이산적으로 가능한 모든 핵연료판의 초기 증배계수와 우라늄 장전량을 계산
 - ✓ 핵연료판의 초기증배계수와 연료 질량을 이용하여 전노심 주기 추정 ✓ 초정 노시조기가 가자 ㅋ 미테에 대하여 모테카르 저노시 여스게사을
 - ✓ 추정 노심주기가 가장 큰 모델에 대하여 몬테칼로 전노심 연소계산을 수행

•••

선형증배계수 모델을 이용한 판형노심 설계(2/2)

- 선형 증배계수 모델을 통하여 결정한 변수
 - ✓ 카라멜의 두께(h) : 4.30mm
 - ✓ 집합체당 핵 연료판의 개수(N): 40
 - ✔ 채널의 두께 : 4.78mm
- 노심주기: 1652일

제원 비교

집합체	WH 17X17	판형 SMR	
핵연료 질량	287.005(kg)	306.696(kg)	
감속재 질량	37.797(kg)	33.316(kg)	
(N _M /N _F)	1.78499(pinwise)	1.56031(platewise)	
집합체 크기	21.6074X21.6074X200(cm ³)	21.6074X21.6074X200(cm ³)	
핵연료 감속재 총 부피	79855.49(cm ³)	75597.98(cm ³)	

최대잉여반응도 제어

- 개요
 - ✓ 선형증배계수 모델을 도입하여 설계한 판형 노심에 가연성 독물질을 핵연료에 대체하는 방식으로 계산을 진행
 - ✓ 상용되었던 판형 노심 SHIPPINGPORT2에 사용된 가연성 독물질 B-SS 을 사용하여 최대잉여반응도 제어
 - ✓ 독물질 혼용카라멜 Er₂O₃-UO₂, Gd₂O₃-UO₂을 이용한 최대잉여반응도 제 어
- 설계목표
 - ✓ 최대잉여반응도 3000pcm 이내
 - ✓ 4년 이상(열출력 180MWt)

가연성 독물질 삽입 전략(1/5)

• 반응도 평탄화 전략

- 1. 독물질의 함유도 결정
- 2. 독물질 카라멜의 개수 결정
- 3. 축방향 수평방향 독물질 재배치

그림 7. B-SS가 삽입된 핵연료판

그림 6. SEED1 집합체 단면

그림 5. 독물질 삽입전 이차원 집합체 출력분포

가연성 독물질 삽입 전략 (2/5)

- 독물질의 함유도 결정
 - ✔ 잔존독작용 효과 1% 미만이 되는 함유도 사용
 - ✓ 잔존독작용효과 = (주기말 무독봉집합체반응도 – 주기말 독봉집합체반응도) × 100(%)

가연성 독물질 삽입 전략 (3/5)

- 독물질 카라멜 개수 결정
 - ✓ 결정된 독물질의 개수를 조정하여 제논, 사마리움 평형상태 때의 유효 증배계수 값을 임계근처로 만듬

가연성 독물질 삽입 전략 (4/5)

- 축방향+수평방향 독물질 재배치
 - ✓ 동일한 개수의 독물질 카라멜 사용
 - ✓ 출력분포가 높은 곳에 독물질 재배치
 - 1. 축방향

그림 8. 독물질 삽입전 단일 집합체의 축방향 출력분포

가연성 독물질 삽입 전략 (5/5)

축방향+수평방향 독물질 재배치
 ✓ 동일한 개수의 독물질 카라멜 사용
 ✓ 출력분포가 높은 곳에 독물질 재배치
 2. 수평방향

그림 10. A 집합체 단면도

그림11.B집합체 단면도

그림 12. 독물질 재배치 최종 노심 단면도

독물질 삽입 연소해석 결과

- 1. B-SS(B 1.6 w/o) 사용 노심
- 2. Er₂O₃-UO₂(Er₂O₃ 2.7 w/o), Gd₂O₃-UO₂(Gd₂O₃10 w/o) 사용 노심

B-SS 사용 노심				Er ₂ O ₃ -UO ₂ , Gd ₂ O ₃ -UO ₂ 사용 노심			
재배	치 이전	재배치 이후		재배치 이전		재배치이후	
노심주기 (day)	최대잉여반 응도(pcm)	노심주기 (day)	최대잉여반 응도(pcm)	노심주기 (day)	최대잉여반 응도(pcm)	노심주기 (day)	최대잉여반 응도(pcm)
1128	3759	1321	2236	1258	3841	1509	2746

100,000 histories/200 inactive/150 active cycles, ENDF/B-VII.0

핵적 특성 계산(1/3)

• 출력분포(Er₂O₃-UO₂, Gd₂O₃-UO₂ 재배치 노심)

	,		
1.0978	1.0887	1.0603	0.9678
1.0887	1.0804	1.0396	0.8541
1.0603	1.0396	0.9905	
0.9678	0.8541		
	Day :	800	
1.3346	1.2840	1.1341	0.8233
1.2840	1.2261	1.0620	0.7236
1.1341	1.0620	0.8776	
0.8233	0.7236		
	Day :	1500	
1.2366	1.2421	1.1567	0.8717
1.2421	1.2199	1.1093	0.7742
1.1567	1.1093	0.9098	
0.8717	0.7742		

Day : 0

Day : 400

1.2533	1.2193	1.1008	0.8775						
1.2193	1.1749	1.0416	0.7773						
1.1008	1.0416	0.9044							
0.8775	0.7773								
	Day : 2	1200							
1.4254	1.3596	1.1530	0.7711						
1.3596	1.2859	1.0693	0.6773						
1.1530	1.0693	0.8310							
0.7711	0.6773								
<i>P</i> < 1									
1 <p<1.1< td=""></p<1.1<>									

1.1<P<1.2 1.2<P<1.3 1.3<P<1.4 1.4<P

핵적 특성 계산(2/3)

• MTC

Operation day	0	400	800	1200	1500
MTC(pcm/℃)	-133	-105	-75	-63	-59
SD(pcm)	5.2	5.2	5.0	5.2	5.0

• FTC

Operation day	0	400	800	1200	1500
FTC(pcm /℃)	-3.76	-3.27	-3.29	-3.49	-3.79
SD(pcm)	0.26	0.24	0.24	0.24	0.24

핵적 특성 계산 (3/3)

• PPF(집합체 당 6 × 6 × 19)

Operation day	0	400	800	1200	1500
PPF	1.94	3.50	3.16	2.26	1.84
Average relative err.	0.9%	1.1%	1.0%	0.9%	0.9%

그림 14. 출력 계산 단위

결론

- 선형증배계수 모델을 이용하여 최적의 집합체 설계 변수 결정
 ✓ 카라멜 두께(4.30mm), 채널의 두께(4.78mm)
- 우라늄 혼용 독물질을 사용하여 기준 요건 만족
 ✓ B-SS에 비하여 핵연료 장전량 ↑
- 노심 내 독물질 재배치 시, 노심주기 ↑, 최대잉여반응도↓
- 핵특성계산

향후 계획

- 제어봉설계
- 이차정지계통 마련
- 봉상형 노심과의 비교

감사합니다.