

Modeling and Measurement of Hydrogen Ion Species Fractions in a Penning Plasma Discharge

Kyumin Choe^a, Kyoung-Jae Chung^{a*} and Y. S. Hwang^a

^a Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, KOREA

*Corresponding author: jkjlsh1@snu.ac.kr

INTRODUCTION

Main fields of proton ion source applications

✓ Accelerators

✓ Nuclear fusion / Neutral beam injection for plasma heating or diagnostics

✓ Neutron generators

 \rightarrow High beam current and high monoatomic fraction is essential.

Motivation of this research

 \checkmark molecular ion beam such as H₂⁺, H₃⁺ \rightarrow result in beam loss or reduce the reaction: high monoatomic beam is an important performance of proton ion source

Experiments and Results

Structure of PIG ion source

Discharge volume: 25 mm(D) X 50 mm(L) B-field: 400 – 1000 G Gas: Hydrogen Operating pressure: 2 – 20 mTorr

Discharge current: 10 – 400 mA

- Research objectives
 - \checkmark To establish a model to calculate the ion species fraction of hydrogen plasma \rightarrow the change of the ion species fraction according to the plasma parameters & the direction to increase the monoatomic fraction
 - \checkmark To measure ion species fraction and to compare with the model
 - Ion source type: PIG (Penning or Philips Ionization Gauge) ion source
 - Measure the ion species fraction: dipole mass analyzing magnet
 - \rightarrow To suggest the improvement direction of the ion source

Numerical Model of Hydrogen Ion Species

List of process reactions

Reaction	Rate constants
$H + e \rightarrow H^+ + 2e$	<i>K</i> ₁
$H^+ + e \rightarrow H + h\nu$	<i>K</i> ₂
$H_2 + e \rightarrow 2H + e$	<i>K</i> ₃
$\mathrm{H}_2 + e \rightarrow \mathrm{H}_2^+ + 2e$	K_4
$H_2 + e \rightarrow H^+ + H + 2e$	K_5
$\mathrm{H_2^+} + e \rightarrow 2\mathrm{H^+} + 2e$	K_6
$H_2^+ + e \rightarrow H^+ + H + e$	K_7
$H_2^+ + e \rightarrow 2H$	K_8
$H_3^+ + e \rightarrow H_2 + H$	K_9
$H_3^+ + e \rightarrow H^+ + 2H + e$	<i>K</i> ₁₀

Ion species fraction measurement

An example of ion species data

Measurement vs. Model

 γ : recombination coeff., D_{eff}^{H} : effective diffusion coeff., Λ_{eff} : effective diffusion length τ_{H^+} : containment time of H⁺, u_{B,H_x^+} : Bohm velocity of H⁺_x, A_{eff} : effective area

Equations

Particle balance equations (in steady state)

 $\frac{dn_i}{dt} = \sum_{i=1}^{N_p} a_j^p K_j^p \prod_{j=1}^{N_j^p} n_{jl}^p - \sum_{i=1}^{N_d} a_j^d K_j^d \prod_{l=1}^{N_j^{pu}} n_{jl}^d = 0$

H: $K_2 n_{H^+} n_e + 2K_3 n_{H_2} n_e + K_5 n_{H_2} n_e + K_7 n_{H_2^+} n_e + 2K_8 n_{H_2^+} n_e + K_9 n_{H_3^+} n_e + 2K_{10} n_{H_3^+} n_e$ $+K_{11}n_{H_2^+}n_{H_2} + K_{13}n_{H^+} + K_{15}n_{H_2^+} - K_1n_Hn_e - K_{12}n_H = 0$

 $\mathbf{H}^{+}: K_{1}n_{H}n_{e} + K_{5}n_{H_{2}}n_{e} + 2K_{6}n_{H_{2}^{+}}n_{e} + K_{7}n_{H_{2}^{+}}n_{e} + 2K_{10}n_{H_{3}^{+}}n_{e} - K_{2}n_{H}n_{e} - K_{13}n_{H}n_{e} = 0$

 $\mathbf{H_2^+}: K_4 n_{H_2} n_e - K_6 n_{H_2^+} n_e - K_7 n_{H_2^+} n_e - K_8 n_{H_2^+} n_e - K_{11} n_{H_2^+} n_{H_2} - K_{14} n_{H_2^+} = 0$

 $\mathbf{H_3^+}: K_{11}n_{H_2^+}n_{H_2} - K_9n_{H_3^+}n_e - K_{10}n_{H_3^+}n_e - K_{15}n_{H_3^+} = 0$

Charge conservation equation

 $n_{H^+} + n_{H_2^+} + n_{H_3^+} = n_e$

Particle conservation equation

1E9	1E10	1E11	1E12	1E13	0	5	10	15	20	
	Plas	ma density [c	cm⁻³]			Pressure [mTorr]				
(a) by discharge current / plasma density						(b) by operating pressure				

Conclusions & Future Works

- Model for the hydrogen ion species fraction
 - \checkmark High plasma density and low operating pressure \rightarrow increase the monoatomic fraction
- The hydrogen ion species fraction measurement at a Penning plasma discharge source
 - \checkmark The model and the measurement agree well
 - ✓ The measured monoatomic fraction: about 10% or below
 - \checkmark The discharge current and the density of the generated plasma is low \rightarrow low monoatomic fraction
 - \checkmark For a monoatomic fraction close to 90%, the plasma density \rightarrow up to about 1×10¹³ cm⁻³ at 10 mTorr
- For high plasma density
 - \checkmark Discharge regime: glow \rightarrow arc (several amperes of the discharge current)
 - ✓ New power systems are needed.

$n_{H_2} + \frac{1}{2}n_H + \frac{1}{2}n_{H^+} + n_{H_2^+} + \frac{3}{2}n_{H_3^+} = n_g \left(=\frac{p}{k_B T_a}\right)$

T_e and pressure relation

$K_{iz}(T_e)$ $u_B(T_e)$

 $K_{iz}(T_e)$: ionization rate constant $u_B(T_e) = \sqrt{k_B T_e/M}$: Bohm velocity $d_{eff} = V/A_{eff}$: effective plasma size

Modeling results

References

O. Fukumasa, R. Itatani and S. Saeki, J. Phys. D: Appl. Phys. 18, 2433 (1985) R. Zorat, J. Goss, D. Boilson and D. Vender, *Plasma Sources Sci. Technol.* 9, 161 (2000)

R. K. Janev, W. D. Langer, K. Evans, Jr. and D. E. Post, Jr., *Elementary Processes in* Hydrogen-Helium Plasmas, Springer-Verlag, Berlin (1987)

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and *Materials Processing*, Wiley-Interscience, Hoboken, NJ (2005)

K. J. Chung, B. K. Jung, Y. H. An, J. J. Dang and Y. S. Hwang, *Rev. Sci. Instrum.* 85, 02B119 (2014)

Kyumin Choe_P07B09

Korean Nuclear Society 2017 Spring Meeting, May 18th – 19th, 2017, Jeju, Korea

