Accident Tolerant Fuel Cladding: In Progress

김 영진 ㈜미래와 도전 (FNC Technology)

Presented at 2017 KNS Spring Meeting Jeju Island, Korea May 19, 2017

Behavior of Fuel and Core Materials in Severe Accidents

Objectives of ATF Cladding Development

- Provide additional "coping time" for operator to restore cooling system
- Explore possibility of stabilizing fuel rods with a combination of ATF cladding and injection of small volume of water
- To gain meaningful "coping time", ATF cladding needs to survive at 1200-1500°C
 - Has mechanical strength to maintain fuel/core in coolable geometry
 - Has resistance to steam oxidation to reduce hydrogen generation

Desired Attributes of ATF Cladding

- Good high temperature properties (1200-1500°C)
 - Oxidation resistance to steam (vs. Zr)
 - Reduce hydrogen production and decay heat
 - High tensile and creep strength to maintain fuel rod integrity and core coolability
- Compatible with current fuel/core designs
- Meet regulatory and operational requirements
 - Licensing
 - Fuel reliability
 - Corrosion resistance, irradiation embrittlement resistance
 - Fuel economics

References

2013-2017 EPRI/INL/DOE Joint Workshop on Accident Tolerant Fuel

DOE R&D Strategy For Enhanced Accident Tolerant Fuels –

10 Year Goal

AFC ATF program is supported by a large part of the U.S. nuclear complex

National Laboratories

Pacific Northwest NATIONAL LABORATORY

Universities

UNIVERSITY OF ILLINOIS

URBANA-CHAMPAIGN · CHICAGO · SPRINGFIELD

Nuclear Industry

) imagination at work

Frank Goldner, 2017

Bilateral International Collaboration (Significant ATF Development)

France

- Advanced core materials
- Joint support of Halden collaborative irradiations

European Union

• Three general INERIs currently underway with JRC-ITU

<u>UK</u>

- Active partners in ATF FOAs and IRPs
- Joint participation in ATF OECD/NEA
- Basic material properties of high density fuels

Russian Federation (currently on hold)

- Advanced LWR fuels and ATF
- Exchange of attributes and metrics

<u>China</u>

- Attributes and metrics
- Information exchange on R&D facilities
- Assessment of ATF Performance
- Collaborative testing opportunities

<u>Korea</u>

- Advanced LWR fuels and ATF
- Collaboration for Halden irradiation test

<u>Japan</u>

- Definition of attributes and metrics
- Coordination of technology R&D
- Coordination of facilities used for R&D

<u>Others</u>

- OECD/NEA Expert Group
- IAEA Expert Group

USA Industry Teams for DOE ATF Cladding Program

(2012 – present)

AREVA

- Cr coated Zr
- Increased fuel conductivity
- Additives
 - SiC powder or whiskers
 - Diamond
 - Chromia dopant

GE

- Develop advanced ferritic/martensitic steel alloys (e.g., Fe-Cr-Al) for fuel cladding to improve behavior under severe accident scenarios
- Objectives:
 - Characterize candidate steels
 - Study tube fabrication methods, neutronics, fuel economy, thermo-hydraulic calculations, regulatory approval path
 - Initiate ATR testing with UO₂ and two cladding materials.

Westinghouse

- Cladding concepts:
 SiC and SiC ceramic matrix composites;
 - coated Zr alloys
- High density/high thermal conductivity fuel pellets
- First batch of U₃Si₂ pellets were sintered using finely ground powder
- Pellets were pressed using pressures of 6,000-10,000 psi and sintered at temperatures of 1400° C U₃Si₂ Pellet

Jon Carmack, 2016

Worldwide ATF Cladding Projects

USA DOE Funded Programs						
Organization	Areva	GE	Westinghouse			
Base Alloy	Zr alloy	FeCrAl	Zr alloy	SiC composite		
Coating Material	Cr	NI/A	Cr, Cr+Mo, FeCrAl	Ν/Λ		
Coating Process	PVD	IN/A	Cold spray	IN/A		

International Activities									
Organization	EPRI	KAERI		METI	Toshiba	ORNL		China	
Base Alloy	Mo, Mo+L2O3	Zr alloy	SiC composite		SiC fiber braid	FeCrAl	SiC composite	SiC fiber	
Coating Material	Zry, Nb	CrAl, FeCrAl.Cr	N/A	Ν/Δ	SiC composite	SiC	NI/A	Cr, CrN	SiC
Coating Process	PVD	3D laser		SIC composite	CVI, CVD	IN/A	PVD	CVI, CVD	

Comparison of Candidates ATF Cladding

Material	Neutron Cross Section, barns	Melting Temp. °C	Eutectic Temp. °C	Phase Transition Temp. °C	Volatility, °C
Zr	0.184	~1800	~950 with Fe-Ni	~872	
Steel (Fe)	2.56	~1500	1160 with Fe-B	~912	
Мо	2.26	2623	1578 with Zr	None	
SiC	0.171	2730		None	2000
UO2		~2200-2600			

Neutron cross section

- Mechanical strength at >1000°C limits to refractory metals and ceramics
 Maybe achievable with Mo, SiC, and maybe FeCrAI-ODS?
- High temperature oxidation resistance to steam or steam + H₂
 Need surface protection from (AI,Cr)₂O₃, SiO₂, ZrO₂
- Fabricability and normal performance requirements

Mechanical Property of Material

Only Mo-alloy and SiC suitable as candidates for structure designs for temperatures >1200°C?

B. Cheng, 2014

Corrosion/Oxidation Property of Ferric Steel, Mo, & SiC

• Ferritic Steel (FeCrAl)

- Loss of mechanical strength at ~1050°C
- Instability of Cr oxide at >900°C
- Cr soluble in oxidizing HT water
- High solubility of Al₂O₃ in HT water
- Mo
 - Formation of Mo oxides at ~250°C & vaporizes slowly at ~400°C
 - Fast diffusion of O and Mo through the oxides at >600°C and vaporizes rapidly
 - A protective layer needed for high temperature application
- SiC Composites
 - Oxidation in HT water to form SiO₂
 - SiC + $2H_2O = SiO_2 + CH_4$
 - SiC + $2O_2 + 2H_2O = Si(OH)_4 + CO_2$
 - High solubility of SiO₂ in the LWR coolant
 - $SiO_2 + 2H_2O = SiO(OH)_3^{-} + H^{+}$
 - Necessity of a protective layer

Coated Zr Cladding

Areva: Cr coating by PVD

KAERI: Cr, Cr/AI & ODS-FeCrAI coating by 3D laser

Surface Modified Cladding

Alloy & structure design

- Cr-Al alloy : Superior oxidation resistance & no pitting corrosion
- FeCrAl/Cr multi-layer : thin Cr-barrier to prevent Fe-Zr eutectic reaction
- Partial ODS (Y₂O₃, Gd₂O₃, Er₂O₃): Increase deformation resistance, economic & flexible reactivity control

Fabrication processes

- 3D laser coating : coating & ODS treating
- Arc ion plating : thin layer and alloy coating

(Before/after air oxidation at 1200°C for 20 minutes)

Cr Coating

- Dense coating layer
- Interdiffusion of Zr into Cr layer
- Joining/welding at coated area?
- Cr oxide
 - Stable in LWR-H₂ water, not in LWR-O₂ water
 - Instability at >900°C

FeCrAl Coating

- Porous coating layer
- Difficulty for optimum FeCrAl alloying contents on coating layer
- Joining/welding at coated area

Ferritic Steel Alloys (FeCrAl)

(Need to optimize the concentrations of Cr/AI)

<u>GE-GNF</u>

	Alloy	Nominal Composition			
Α	Zirc-2 UNS R60802	Zr + 1.2-1.7 Sn + 0.07-0.2 Fe + 0.05-0.15 Cr + 0.03-0.08 Ni		200	
В	Ferritic steel T91 K909 01	Fe + 9 Cr + 1 Mo + 0.2 V	m²)	150 -	
С	Ferritic steel HT9 S421 00	Fe + 12 Cr + 1 Mo + 0.5 Ni + 0.5 W + 0.3 V	Jg∕c	100 -	
D	Nano ferritic alloys - N FA	e.g. 14YWT; Fe + 14 Cr + 0.4 Ti + 3 W + 0.25 Y ₂ O ₃	e (n	50 -	
Е	MA956 or UNS S6795 6	Fe + 18.5-21.5 Cr + 3.75-5.75 Al + 0.2-0.6 Ti + 0.3-0.7 Y_2 O_3	าลทย	0 -	
G	ΑΡΜΤ	Fe + 22 Cr + 5 Al + 3 Mo	s Ct	-50 -	
н	High Cr Ebrite S4462 7	Fe + 25-27.5 Cr + 1 Mo + 0.17 (Ni + Cu)	Mas	80	00
J	Alloy 33 – UNS R2003 3	33 Cr + 32 Fe + 31 Ni + 1.6 Mo + 0.6Cu + 0.4 N	2		

Lined Mo: EPRI

(Need a protective layer)

SiC Composite

(Soluble in LWR & need a protective layer)

Westinghouse

ORNL

ATF Technologies

Summary

Product Development

- International ATF community is well coordinated on ATF cladding development and makes a good progress
- A lot of technical difficulties on candidate ATF claddings need to be solved

Economic Benefit

 Commercial vendors need to optimize the best cladding for the cost benefit and no/low risk at operating LWR plants

Regulatory Issues

 Regulatory issues have to be identified and resolved before implementation at plants

THANK YOU

www.fnctech.com