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1. Introduction 

 
The algorithm that gives computers the learning 

capability, and accordingly enable data-driven decision, 

estimation, and clustering is based on machine learning. 

The purpose of machine learning is to develop the 

algorithm that performance P on task T improves with 

experience E. In this sense, the studies for developing 

the optimal machine learning algorithm such as artificial 

neural networks (ANNs), Bayesian inference, fuzzy 

inference, and support vector machines (SVMs) have 

been carried out. 

Among them, especially, the studies on application of 

SVMs to classification and regression problems is 

described in this paper. The current embodiment of 

SVMs was proposed by C. Cortes and V. Vapnik in 

1995 [1] and it is an algorithm with a neural network 

structure based on statistical learning theory. These 

SVMs have been generally used for event classification 

and identification. In addition, after the introduction of 

Vapnik’s ε-insensitive loss function [2,3], SVMs have 

been widened to be used to solve the nonlinear 

regression problems. In other words, SVMs are 

supervised learning models related to the learning 

algorithm that analyzed the data used for classification 

and regression problems. Additionally, using the kernel 

function [1], SVMs can effectively perform the 

nonlinear classification and regression analysis. 

There are studies using these SVMs in 

instrumentation and control field of nuclear power 

plants (NPPs). First of all, 7 transients of NPPs were 

classified and identified [4]. Furthermore, golden time 

for accident recovery [5], power peaking factor (PPF) 

[6], departure from nuclear boiling ratio (DNBR) [7], 

residual stress of welding metal [8], and loss of coolant 

accident (LOCA) break size [9] were estimated using 

SVM models. 

 

2. Support Vector Machines 

 

As an artificial intelligence method applied in nuclear 

industrial fields, SVMs are learning tools that use a 

hypothesis space of a linear function in a higher 

dimensional space, which are trained through a learning 

algorithm originated from statistical learning theory. 

Although the structure of SVMs and artificial neural 

networks (ANNs) are similar, they are differ with the 

aspect of learning method or risk minimization 

optimization [10]. SVMs utilizes a structural risk 

minimization (SRM) principle to make a minimum of 

the upper bound on the expected risk [11]. This 

difference of the risk minimization enable SVMs to 

have better generalization performance than ANNs [11]. 

A SRM principle is depicted in Fig. 1. 
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Fig. 1. An illustration of the SRM principle [11]. 
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In addition, in previous studies, the slack variable δ 

associated with the learning efficiency of the SVM 

model was used. Generally, it is regarded that all the 

data are not be able to be precisely separated. Thus, the 

slack variable contributes to establishing the optimal 

SVM models by making a data selection area wider. 

Nonlinear classification and regression problems can 

be changed into a linear analysis using the kernel 

function. That is, this is to nonlinearly map the data 

from the initial space into a kernel-induced higher 

dimensional space. Because of the best performance in 

aforementioned studies, the radial basis function was 

generally used as follows: 
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2.1 SVMs for Event Classification 

 

In case that SVMs are applied to a classification 

problem, it is called support vector classification (SVC). 

Classification problems using SVMs can be commonly 

considered as a two-class classification problem as 

shown in Fig. 2. Two-class classification method can 

establish the decision boundary to separate the data 

vectors into one of two classes based on a learning data 

set of which classification is known as a priori. A 

decision boundary dividing the classes is usually 

expressed as follows: 

 

0b  w x  (2) 

 

where vector w and bias b determine the decision 

boundary. 

 

Even though, however, several classifiers that 

separate the data into two-class exist, only the one 

classifier can become the optimal separating hyperplane, 

which has a the widest margin that is the interval 

between the classifier and the nearest data points of 

each class. The optimal separating hyperplane can be 

established by minimizing the following function: 

 

21
( )

2
 w w  (3) 

  

 

As shown in Fig. 2, magnitude of w has to be 

minimized to make the margin maximum. Finally, the 

optimal separating hyperplane of SVC function using 

the slack variables and kernel function becomes: 
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Fig. 2. Graphical description of the binary data classification 

using SVM model with slack variables. 

 

2.2 SVMs for Regression Analysis 

 

As stated above, after the introduction of Vapnik’s ε-

insensitive loss function [2,3], SVMs can be applied to 

a regression problem. In this case, SVMs can be termed 

support vector regression (SVR). The SVR model is 

used to resolve various problems such as a time series 

forecasting and a nonlinear regression. 

The fundamental concept of SVR is to map the input 

data from the initial space into a kernel-induced higher 

dimensional space, and then to perform the linear 

regression analysis. In other words, nonlinear regression 

problems can be converted into linear regression 

problems in a characteristic space. The SVR function is 

generally expressed as follows: 
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where ( )t x  means a characteristic that is nonlinearly 

changed from the input space x(t), 
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The following regularized risk function using  

ε-insensitive loss function has to be minimized to 

compute vector W and bias and acquire the optimal 

regression function [12]. 
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Fig. 3. Graphical description of the insensitive ε-tube with 

slack variables. 

 

The ε-insensitive loss function in Eq. (6) is used for 

estimation stabilization (refer to Fig. 3) and this term is 

determined according to Eq. (7). Additionally, the 
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parameter μ is a generalization parameter, which has a 

role to determine the trade-off between the number of 

support vectors and noisy data. ε and μ as user-specified 

parameters are related to generalization performance 

and overfitting. 

Lastly, the optimal SVR function using the slack 

variables and kernel function becomes: 
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2.3 SVMs with Multiple Modules 

 

In an effort to acquire the optimal performance of 

SVMs, the study for multiple connection of modules 

that comprised of the entire calculation process of 

aforementioned SVC or SVR models was carried out. In 

this paper, SVMs with multiple modules can be checked 

in Fig. 4. It consists of more than two modules and has a 

structure connected in series. The authors called this as 

cascaded structure and developed the cascaded support 

vector regression (CSVR) model to apply to regression 

analysis [8]. 

The CSVR method makes it possible to show the 

good performance by transferring the optimal output 

from a preceding module to the next module. 

Unfortunately, excessive increase in SVR modules may 

induce the overfitting problem in CSVR model. 

Therefore, it is necessary to prevent the overfitting 

problem and guarantee the best performance through 

proper generalization. 
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Fig. 4. SVR model in the cascaded structure [8]. 

 

3. Optimization of SVMs 

 

It is obvious that the optimization of the developed 

SVC or SVR models is essential to show the best 

performance. The optimization of the SVM models can 

be achieved by selecting and learning from the 

informative data, and solving the overfitting problem. 

 

3.1 Solving the Overfitting Problem 

 

For the optimization of the SVM models, the data 

used for the machine learning methods are usually 

divided into learning data, validation data, and test data. 

Among them, the validation data are used to measure 

the generalization performance of estimation models 

and are associated with solving the overfitting problem. 

The two methods for SVM optimization was 

proposed and used in previous studies. First, it was 

cross-validation using the validation data set as a scale 

of the generalization, which has a role to halt training 

when the generalization is getting worse. Secondly, a 

genetic algorithm such as selection, crossover, and 

mutation, and the fitness function were used to minimize 

the errors for a data set 

 

3.2 Data Selection 

 

It is important that the informative data have to be 

selected to efficiently train the SVM models as well. 

Several studies used a subtractive clustering (SC) 

scheme [13] to collect the data with the highest potential. 

Fig. 5 indicates an example of data selection using a SC 

scheme. 
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Fig. 5. An illustration of the informative data selection using 

SC scheme. 

 

4. Application of SVMs 

 

Several representative studies using these SVM 

models applied for identification, classification, and 

regression are described in this section.  

 

4.1 Support Vector Classification 

 

Major transients such as LOCAs where the break 

positions are hot-leg, cold-leg, and steam generator tube 

(SGT), total loss of feedwater (TLOFW), main steam 

line break (MSLB), feedwater line break (FWLB), and 

station blackout (SBO) of NPPs were identified using 

the integrated values of sensor signals [4]. Fig. 6 shows 

the identification of transients of NPPs using the SVC 

model 

 

4.2 Support Vector Regression 

 

The representative studies using the proposed SVR 

model are to estimate golden time for accident recovery 

[5], PPF [6], DNBR [7], LOCA break size [8], and 
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cutter wear of a milling machine. Fig. 7 is a graph 

showing the comparison of estimated cutter wear versus 

actual cutter wear using the sensor signals such as force, 

acoustic emission, and vibration using the SVR model. 

The high accuracy of estimation can be checked. 
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Fig. 6. Identification of transients of NPPs using the SVC 

model. 
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Fig. 7. Comparison of estimated cutter wear versus actual 

cutter wear of a milling machine. 
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Fig. 8. Comparison of residual stress in welding of dissimilar 

metals. 

 

4.3 Cascaded Support Vector Regression 

 

The residual stress in welding of dissimilar metals 

were estimated using the CSVR model [8]. Likewise, 

the CSVR model shows outstanding estimation accuracy 

(refer to Fig. 8).  

 

5. Conclusions 

 

SVM is one of the representative machine learning 

method, which has been used for the studies to improve 

the safety of NPPs. To be specific, the SVM method 

was used for a classification problem such as 

identification of the transients of NPPs and regression 

problems such as estimation of golden time for accident 

recovery, PPF, DNBR, and cutter wear, which shows 

good performance and the applicability. Through 

application of these verified SVM models, it will be 

possible to enable to improve NPP safety, minimize 

human error, keep the integrity of internal equipment, 

and economically maintain the plants in the future. 
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