'2017 KNS Autumn Meeting, 2017.10.25-27

MEDEAC: <u>Matrix Exponential based</u> isotope <u>DEpletion and Analysis Code</u>

2017. 10. 27

Jin Young Cho, Sung Min Kim, Yong Hee Choi, and Bon Seung Koo

Korea Atomic Energy Research Institute

Contents

Introduction

Requirement

Models

- Krylov Subspace Method
- Code Structure
- Numerical Results
- Conclusion

Sungmin Kim et al, "Comparison of MEDEAC and ORIGEN in Fuel Assembly Depletion Calculation," '2017 KNS Autumn Meeting, Gyeongju, Korea, 2017

Introduction

ORIGEN code

- Developed by ORNL
- Used to Estimate the Radioactive Material Inventory in Core or in Spent Fuel Repository
- Used for SMART Radioactive Inventory Source and Decay Heat
- HCB (Human Capability Buildup) for Saudi Engineer
 - CRT Basic and Technical, OJT Basic and In-depth, OJP
- Code License Limit for Saudi Engineer
 - Site License
 - MCNP -> McCARD
 - DORT -> AETIUS
 - > ORIGEN -> MEDEAC

Currently, Saudi Engineer obtained License for MCNP and ORIGEN

Code Requirements

Function of the ORIGEN Code

- Depletion with Step Power or Flux Variation
- Isotope Composition in mol
- Flux or Thermal Power in W
- Decay Heat in W
- Decay Induced Gamma Power in W
- Radioactivity in Ci
- > Alpha (α) Radioactivity in Ci
- $> m^3$ air to meet RCG (Radioactivity Concentration Guide) Inhalation
- $> m^3$ water to meet RCG Ingestion Requirement
- $> m^3$ water to meet Chemical Ingestion Requirement
- (α,n) Neutron Source in /sec
- Spontaneous Neutron Source in /sec
- Photon Emission Rate in /sec
- ORIGEN is Role Code for MEDEAC

Models

\bullet Fission Energy (κ) model

 $\kappa(Mev/fission) = a_1(Z^2A^{0.5}) + a_2$

 $a_1 = 1.29927 \times 10^{-3}$

 $a_2 = 33.12$

Predicts with a maximum error of 1 % for nuclides between ²³²Th and ²⁴²Pu

Data fixed in the Code

- Total 42 Spontaneous Fission Isotopes and their Neutron Yields
- Total 32 Fission Isotopes and their Neutron Yields
- > 18 Gamma Energy Group Structure
- > Neutron Yield from (α, n) reactions
 - 8 Isotopes: ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Am, ²⁴²Cm, ²⁴⁴Cm
- > Atomic Chemical Toxicity in g/m^3 water
- Fission Product Yield Isotope
 - 8 Isotopes: ²³²Th, ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ²⁴⁵Cm, ²⁵²Cf

Models

Data in the Library

- Atomic Weight
- > Atomic Abundance
- Decay Constant
- Decay Heat Recoverable (Q)
- > RCG for Inhalation in Ci/m^3 air (10CFR20 App. B Table 2)
- > RCG for Ingestion in Ci/m^3 water (10CFR20 App. B Table 2)
- Decay Fraction Data
- Neutron Cross Section
- Gamma Yield Data for 18 Gamma Groups
- Fission Product Yield Data for 8 Isotopes

Chain Buildup

Decay Chain

Order	Decay Type	Final Isotope
1	β^- decay to exited state	$A_{Z+1}X^m$
2	β^+ or electron capture	$A_{Z-1}X$
3	β^+ or electron capture to exited state	$A_{Z-1}X^m$
4	alpha decay	$A^{-4}_{Z-2}X+\alpha$
5	Isomeric transition	${}^{A}_{Z}X^{m} \rightarrow {}^{A}_{Z}X$
6	Spontaneous Fission	
7	$(\boldsymbol{\beta}^- + n)$ decay	$_{Z+1}^{A-1}X+n$
Remaining	β^- decay to stable state	$A_{Z+1}X$

Chain Buildup

Reaction Chain

Order		Reaction Type	Final Isotope		
1	to the second	(<i>n</i> , γ)	A+1 Z X		
2		(<i>n</i> , 2 <i>n</i>)	A-1ZX		
3	Activation & F.P	(n, α)	$A^{-3}_{Z-2}X$		
	Actinide	(<i>n</i> , 3 <i>n</i>)	A-2ZX		
4	Activation & F.P	(<i>n</i> , <i>p</i>)	$A_{Z-1}X$		
	Actinide	Fission			
5		(n, γ')	$A - \frac{1}{Z} X^m$		
6		(<i>n</i> , 2 <i>n</i> ′)	$A+1ZX^m$		

_

Krylov Subspace Method

Krylov subspace method for Matrix exponential $\succ X(t)$ approximation by the Krylov subspace of dimension m as: $K_m{At, X(0)} = \text{span}{X(0), (At)^1 X(0), ..., (At)^{m-1} X(0)}$ Orthonormal basis of the Krylov subspace by using Arnoldi procedure Features of Arnoldi procedure $\mathbf{\mathbf{\mathbf{\mathcal{F}}}}_{m} = \mathbf{V}_{m}^{T}(\mathbf{A}t)\mathbf{V}_{m}$ • $\mathbf{V}_m = [\mathbf{v}_1 \quad \cdots \quad \mathbf{v}_m] \in \mathbf{R}^{n \times m}, \ \mathbf{H}_m \in \mathbf{R}^{m \times m}$: Hessenberg Matrix • $\mathbf{V}_m^T \mathbf{V}_m = \mathbf{I}, \quad \mathbf{V}_m^T \mathbf{V}_{m+1} = \mathbf{0}$ Approximate solution using Krylov subspace $\widetilde{\mathbf{X}}(t) = \mathbf{V}_m \mathbf{y}_{annrox} = \beta \mathbf{V}_m \exp(\mathbf{H}_m t) \mathbf{e}_1$ where $\widetilde{\mathbf{X}}(t)$: Approximate solution of $\mathbf{X}(t)$

 $\mathbf{X}(0) = \beta \mathbf{v}_1 = \beta \mathbf{V}_m \mathbf{e}_1$

Feature of Solver

Matrix Condensation by Removing the Short Lived Isotope

- Equilibrium Condition for Short Lived Isotopes
 - $> \frac{d}{dt}N_i \sim 0$
 - Apply Iterative Algorithm
 - > Criteria for Short Lived Isotopes: $a_{ii} > 1,000$
- Matrix Exponential Solution for Long Lived Isotopes
 - Krylov Subspace Method with order 100
 - Scaling and Squaring Technique
 - ▶ Scaling to $\|\mathbf{H}_m t\|_1 < 0.01 \rightarrow \exp(\widetilde{H}_m t) \approx \mathbf{I} + \widetilde{H}_m t$
- Predictor-Corrector Scheme for Constant Power Condition
- Once-Through Depletion Scheme for Constant Flux or Zero Power Condition

Code Structure

MEDEAC Code Structure

ORIGEN Code Structure

- Contents of Summary Output
 - Edit 1: Overall Results (Bu, Pow, φ, k-inf, Decay Heat, Pow-γ, Ci, RCG in air, RCG in water, Chemical Toxicity in water)
 - Edit 2: Composition Change in mol for important Isotopes
 - Edit 3: Composition Change in gram for important Isotopes
 - Edit 4: Group-wise Gamma Amounts
 - Edit5: Group-wise Photon Energy
 - Edit 6: Neutron Sources ((α, n),
 Spontaneous Fission, Fission,
 Secondary Source)

Examination

Problem

- > Material: 5 g of UO_2 fuel with 4.0 w/o
- > Depletion Condition: Constant Flux of 1.0×10^{14}
- Depletion to 100 EFPD
- Comparison
 - MED: Solution with Time Points of 0, 5, 15, 30, 60, 90, 100 day
 - > REF: $\Delta t = 0.002$ day using MEDEAC, ORI: $\Delta t = 1.0$ day
 - Isotope Number Density, and Summary Result at 100 EFPD

Library Generation

Atomic Inventory (mol) at 100 Day

Activation Product

7	DEE	Err, %				
2	REF	MED	ORI			
Н	1.30E-10	0.00	-0.31			
Не	8.54E-08	0.00	0.00			
Li	4.54E-23	0.00	-4.87			
Be	2.15E-14	0.00	0.00			
В	2.56E-20	0.00	-0.04			
С	8.54E-08	0.00	0.00			
Ν	2.20E-11	0.00	0.00			
0	3.71E-02	0.00	0.00			
F	1.80E-12	0.00	0.06			
Ne	7.30E-19	0.00	0.07			

13

Actinides Err, % Ζ REF MED ORI He 5.05E-11 0.00 0.04 3.82E-24 2.23 0.00 TI 8.03E-20 0.01 3.49 Pb 2.07E-22 Bi 0.00 1.36 1.39E-26 -37.95 -0.93 Po Rn 3.21E-24 0.00 -0.06 Fr 1.47E-26 -1.43-2.52 Ra 1.90E-20 0.00 0.00 Ac 5.44E-19 0.00 0.00 2.74E-13 0.00 0.00 Th Pa 1.92E-13 0.00 0.00 U 1.85E-02 0.00 0.00 5.30E-07 0.00 -0.26 Np 1.22E-05 0.00 Pu 0.00 5.46E-11 -0.020.09 Am 5.68E-13 0.11 Cm 0.00

Fission Product Inventory (mol) at 100 Day

7	DEE	Err	, %	7	DEE	Err	, %	7	Z REF	Err, %	
2	KEF	MED	ORI	2	KEF	MED	ORI			MED	ORI
Н	3.04E-09	0.00	0.03	Y	1.42E-06	0.00	1.06	Cs	4.12E-06	0.00	0.10
Li	1.29E-11	0.00	0.00	Zr	7.96E-06	0.00	0.16	Ва	2.04E-06	0.00	0.00
Be	2.73E-12	0.00	0.04	Nb	3.50E-07	0.00	0.03	La	1.70E-06	0.00	0.00
С	3.38E-13	0.00	0.00	Мо	5.00E-06	0.00	0.84	Ce	4.65E-06	0.00	0.04
Со	3.05E-20	0.00	0.00	Тс	1.49E-06	0.00	0.07	Pr	1.18E-06	0.00	0.08
Ni	1.16E-17	0.00	0.09	Ru	3.60E-06	0.00	0.03	Nd	3.83E-06	0.00	0.03
Cu	1.09E-16	0.00	0.00	Rh	4.61E-07	0.00	0.09	Pm	4.82E-07	0.00	0.00
Zn	1.49E-11	0.00	0.00	Pb	4.98E-07	0.00	0.08	Sm	5.23E-07	0.00	0.23
Ga	7.03E-13	0.00	0.00	Ag	3.07E-08	0.00	0.03	Eu	6.10E-08	0.00	0.02
Ge	1.67E-09	0.00	0.00	Cd	6.04E-08	0.00	0.02	Gd	1.04E-08	0.00	0.00
As	5.62E-10	0.00	0.02	In	9.36E-09	0.00	0.03	Tb	7.01E-10	0.01	0.07
Se	1.41E-07	0.00	0.00	Sn	9.64E-08	0.00	1.13	Dy	2.66E-10	0.04	0.04
Br	5.57E-08	0.02	0.02	Sb	4.13E-08	0.00	-0.02	Но	1.24E-11	0.00	0.08
Kr	9.78E-07	0.00	0.03	Те	6.08E-07	0.00	0.02	Er	9.35E-12	0.00	0.01
Rb	9.00E-07	0.01	0.02	Ι	3.56E-07	0.00	2.95	Tm	2.75E-17	0.00	0.00
Sr	3.01E-06	0.00	0.53	Xe	6.27E-06	0.00	0.29	Yb	2.18E-20	0.00	-0.05

KAERI =

KAERI

= 14

Summary Results at 100 Day

Parameter	MEDEAC	ORIGEN
Power, W	5.87E+01	5.88E+01
Decay Heat, W	3.70E+00	3.70E+00
Gamma Power (Decay), W	1.02E+00	1.02E+00
Radioactivity, Ci	3.27E+02	3.28E+02
Alpha Activity, Ci	1.98E-04	1.98E-04
RCG, m^3 air	1.22E+11	1.21E+11
RCG, m^3 water	5.75E+08	5.75E+08
Chemical, m^3 water	1.26E+01	1.26E+01
(α, n) Neutron	1.45E-01	1.45E-01
S.F. Neutron	1.18E-01	1.18E-01

Conclusion and Future Work

♦ MEDEAC

- Developed using Krylov Subspace Method to Replace ORIGEN code
- > Applied to UO₂ Fuel with Constant Flux of 1.0×10^{14}
- Solution Comparison at 100 day with Fine Depletion and ORIGEN2
- Library Converted from ORIGEN2 Library
- MEDEAC Solution with 30 Day Depletion is Comparable with Fine Depletion Solution and ORIGEN2
- It is concluded that MEDEAC can be used as an Alternative Code to ORIGEN2
- Future Work
 - Library Update
 - 1-G XS
 - RCG Data etc
 - Solver Update

