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1. Introduction 

 
It’s well known that the depletion equation can be 

solved by matrix exponential method such as series 

approximation method or Krylov subspace method. On 

the other hand, a way of solving it in Monte Carlo 

method is introduced by Shim [1][2]. In his work, the 

mathematical formulation of kinetic Monte Carlo 

(KMC) is derived and the exactness of KMC solution is 

proved by solving a simple kinetic problem that has 

analytic solution. Essentially the same work is made in 

this paper except that the target problem is more 

realistic depletion equation compared to Shim’s work. 

Besides making depletion code that employs KMC 

method, the Monte Carlo perturbation algorithm is also 

introduced based on correlated sampling (CS) algorithm 

while Shim did the same work by using differential 

operator sampling (DOS) method. The sensitivity of the 

input cross section data to the final result is investigated 

through CS algorithm and compared with the results of 

the deterministic code.  

In the subsequent chapter, the mathematical 

formulation for KMC will be given. Actually the 

formulation is exactly the same with the Shim’s work 

but it is unavoidable to repeat here since the 

explanation of CS algorithm requires it. In chapter 3, 

the numerical results obtained by KMC are provided in 

the first place to see whether it matches well the 

deterministic solution. And then, the results gained 

from CS algorithm will be presented. 

 

2. Mathematical Formulation of KMC 

 

2.1 Probability Density Function for a Solution Vector 

 

In deterministic method, the depletion equation for 

nuclide density vector  X t  at a position or burn 

region is represented by a system of first order 

differential equations: 

 

 
 

dX t
X t

dt
 A

 
 

where A  represent depletion matrix including cross 

sections and decay constants. The formal solution of 

this depletion equation is obtained in terms of the 

exponential of the depletion matrix,  

 

   0tX t e X A

 

where  0X  is the initial nuclide density vector. The 

series approximation or Krylov subspace method are 

commonly adopted for computing matrix exponential in 

deterministic method. The fundamental difference in 

KMC approach to the depletion equation comes from 

the fact that KMC considers the solution vector as a 

random variable. Let  ,P X t  represents the probability 

density function for the vector X  at time t. According 

to Fichthron and Weinberg [3], if we assume that the 

depletion process is governed by Poisson process, the 

probability density function of the solution vector X  

must satisfy the following balance equation:  

 

 
     

,
, ,

P X t
k X P X t S X t

t


 

  

(1) 

where 

 k X : Total transition rate for the state X , 
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X
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X 
  : Sample space for X   

 

By applying integrating factor, Eq. (1) can be written 

by  
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(2) 

where
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 ,X t  is called the transition probability density 

function and Eq. (2) is the integral equation for it. It’s 

well known that the solution of Eq. (2) can be 

expressed by Neumann series solution: 
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where 
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Eq. (3) shows that the mathematical form of 

transition probability consists of products and 

summations of  , ,K X t X t   which is made up of 

two probabilities functions  |T t t X  and 

 C X X named respectively time flight kernel and 

event kernel. Eq. (3) tells us that the transition 

probability for X  at time t can be computed by 

summing up all contributions obtained by sequential 

samplings of random variable X  and t through the 

kernel functions.  

 

2.2 Correlated Sampling Algorithm 

 

During repeating the sampling, the response of the 

system can be measured aside from the random 

variables itself. The acting of sampling and 

measurement of the system response can be expressed 

by the following equation: 
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(4) 

 

where  ,r X t  stands for the response function of the 

system. One can obtain Eq. (5) by inserting Eq. (3) into 

Eq. (4).  
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(5) 

where 
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Major concerns in depletion equation are the number 

densities of nuclides and time. Consider that the 

response function is given by 

 

     1 ,,j j j jr X t N X N X N       

  

which means the difference in number density having α 

nuclide index at j-th transition step. Putting it into Eq. 

(6) gives the following equation. 
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Let us assume 2jt t   and introduce the fact that 
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 . It allows to make Eq. (7) in a simple 

form which is given in Eq. (8). 
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where 
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The time can be also considered as the response 

function. In this case, Eq. (9) can be derived without 

any approximation from Eq. (6). 
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Rewriting Eq. (8) and (9) provides Eq. (10) and Eq. 

(11). 
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According to Rief [4], the correlation of sampling is 

one of the possible ways to avoid the divergence of 

relative variance of two different Monte Carlo 

integrations for the two different systems with a small 

perturbation. One possible way of correlating the Monte 

Carlo integration between unperturbed and perturbed 

system is given by 
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(12) 
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where the asterisk(*) denotes the perturbed system 

originated from the reference system and 
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3. Numerical results 

 

Based on KMC algorithm, KMC code is developed 

to solve the depletion equation. It uses ORIGEN 1 

group library to compute the number densities of the 

system as function of time. To begin with, the validity 

of KMC algorithm is checked through a test problem to 

see whether the code works properly. 

 

Table I: Initial condition of the test problem 

Nuclide Mol Nuclide Mol Nuclide Mol 

H-1 4.18E+03 Sn-100 3.47E-01 B-11 1.40E+00 

C-12 5.47E-01 Nd-130 5.91E-03 O-16 4.22E+03 

F-19 4.19E+00 Si-28 2.18E-01 Si-29 1.10E-02 

Si-30 7.32E-03 Cr-50 1.71E-01 Cr-52 3.30E+00 

Cr-53 3.74E-01 Cr-54 9.32E-02 Mn-55 3.35E-01 

Fe-54 6.51E-01 Fe-56 1.02E+01 Fe-57 2.36E-01 

Fe-58 3.14E-02 Co-59 2.63E-02 Ni-58 1.99E+00 

Ni-60 7.66E-01 Ni-61 3.33E-02 Ni-62 1.06E-01 

Ni-64 2.70E-02 Cu-63 5.06E-01 Cu-65 2.25E-01 

Zr-90 3.69E+02 Zr-91 8.05E+01 Zr-92 1.23E+02 

Zr-94 1.25E+02 Zr-96 2.01E+01 Nb-93 7.85E+00 

Mo-92 1.18E-02 Mo-94 7.35E-03 Mo-95 1.26E-02 

Mo-96 1.33E-02 Mo-97 7.59E-03 Mo-98 1.92E-02 

Mo-100 7.65E-03 Ag-107 1.84E+01 Ag-109 1.71E+01 

Cd-110 2.66E-01 Cd-111 2.73E-01 Cd-112 5.14E-01 

Cd-113 2.61E-01 Cd-114 6.13E-01 In-113 2.69E-01 

In-115 5.99E+00 U-235 5.11E+01 U-238 1.01E+03 

 

Table Ι shows the initial condition of the test problem. 

While burn proceeds, the power level is assumed to be 

constant as 6.4MWt. To treat the results statistically, all 

KMC calculations are repeated 30 times with different 

random number seeds. After that, the KMC results are 

compared with that of deterministic code named 

MEDEAC [5], which is developed by KEARI and 

employing Krylov subspace method. Fig. 1 shows the 

time evolution of Xe-135 and Sm-149. The dashed lines 

represent the results of MEDEAC and dots with error 

bar stand for that of KMC. Fig. 2 illustrates the time 

evolution of U-235 and Pu-239 calculated by both 

codes. They show two results are well consistent with 

each other. Note that the size of error bars in Fig. 1 is 

much larger than that of Fig. 2. Because the number 

density of a newly produced nuclide is directly related 

to the sample size in KMC simulation, small number 

densities of Xe-135 and Sm-149 results in relatively 

large statistical error. 
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Fig. 1. Comparison of time evolution of number 

densities of Xe-135 and Sm-149. The dashed lines 

represent deterministic results, while dots with error 

bars stand for KMC solutions. 
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Fig. 2. Comparison of time evolution of number 

densities of U-235 and PU-239. Error bars of KMC 

results are relatively small compared to Fig. 1.  

 

To see whether CS algorithm works, the sensitivity 

of neutron absorption cross section of U-238 with 
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respect to the number density of Pu-239 are computed. 

Original value of 1G neutron absorption cross section 

recorded in ORIGEN library is 8.546e-01 barn. I 

increased it by 10%~50% and observed how it affects 

the behavior of Pu-239 number density. The dashed 

lines in Fig. 3 denote the results obtained by MEDEAC 

and dots with error bar stand for CS results. It shows 

that CS algorithm works well in this case. As another 

example, the sensitivity of neutron absorption cross 

section of U-235 with respect to number density of Np-

237 is calculated and given in Fig. 4. It reveals that 

reduction of cross section by 10%~50% gives different 

result in the number density of Np-237 and CS 

algorithm predicts its sensitivities correctly.  
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Fig. 3. Sensitivity of U-238 absorption cross section 

with respect to Pu-239 number density in depletion 

calculation. The dashed lines represent the deterministic 

results, while dots with error bars stand for KMC 

results with CS algorithm. 
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Fig. 4. Sensitivity of U-235 absorption cross section 

with respect to Np-237 number density in depletion 

calculation. The dashed lines represent the deterministic 

results, while dots with error bars stand for KMC 

results with CS algorithm. 

 

 

4. Conclusions 

 

Depletion equation solver based on KMC algorithm 

is developed. It uses 1 group ORIGEN library as an 

input data. To test whether it works well, the numerical 

results for the test problem are compared with that of 

deterministic code, MEDEAC. The results show that 

they are well consistent. On the other hand, Monte 

Carlo perturbation algorithm based on CS algorithm is 

applied to the same KMC code. The mathematical 

derivation of CS algorithm is a carbon copy of DOS 

algorithm except for the way of treatment of two 

perturbation systems. The calculation results show that 

CS algorithm predicts correctly the sensitivity of input 

data. 
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