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1. Introduction 

 
The nuclear reactor is a complex, nonlinear system. 

The system evolves over time as the system parameters 
vary as the power level changes, the fuel burns up, etc. 
This makes it difficult to use a single linear controller 
for the nuclear reactor power control over the entire 
operating ranges. Recently, in addition, the load-
following capacity of nuclear power plants draws much 
attention as there are cases where the electricity market 
requires nuclear power plants to response to the 
frequent variations in the electricity demand, as 
opposed to the conventional role of nuclear power plant 
as the baseload supplier. These circumstances 
necessitate robust and optimal power tracking 
controllers for nuclear reactor operation. 

This study presents the application of integral sliding 
mode control-based optimal tracking controller to 
secure both robustness and optimality in nuclear reactor 
power control. The validity and effectiveness of the 
proposed control scheme are demonstrated by 
simulations. 
 

2. Problem Statement 
 

Consider a single-input single output (SISO), control-
affine non-linear dynamic system represented by the 
following state-space equation ̇ = () + (),  = ℎ()        (1) 
where  ∈ ℝ×  is the state vector, 	 ∈ ℝ  the control 
input, ,   smooth vector fields on ℝ×  and h ∈ ℝ  a 
scalar, smooth output function. 

Suppose there exists a feedback control law u =u(x)  such that system (1) can be controlled in a 
desired way. We denote this ideal system as ̇ = () + () ,  = ℎ()            (2) 
where  ∈ ℝ  represents the state trajectory of the 
ideal system under the ideal control . 

However, in practice, system (1) is perturbed by 
uncertainties such as parameter variations, model errors 
and external disturbances, and the real trajectory of the 
closed-loop control system may be represented by ̇ = () + () + (, )                  (3) 
where vector ,   represent known model of and  , 
respectively, and (, ) comprises the uncertainties. It 
is also assumed that there is no modelling error or 
measurement noise in output,	ℎ(). 

The control design aims to find a control law u such 
that the state trajectories or the output of system (3) 
satisfy x(t) = x(t) or y(t) = y(t). This study focuses 
on the tracking of desired output trajectories. 
 

3. Controller Design 
 

The control design approach in this study follows the 
input-output linearization scheme. After the system is 
linearized in terms of output and a new control input, 
say 	, we will design an optimal and robust tracking 
controller for . 
 
3.1 Input-Output Linearization of SISO system using 
Feedback Linearization 
 

Our objective is to make the output y(t)  track a 
desired trajectory y(t), and it is assumed that y(t) and 
its time derivatives up to a sufficiently high order are 
assumed to be known and bounded, and the system’s 
relative degree γ is equal to one. Using the notations of 
differential geometry, the differentiation of the output is 
represented by ̇ = ∇ℎ ⋅ ( + ) =ℒℎ+(ℒℎ)           (4) 
where ℒℎ = 	∇ℎ ⋅  and 	ℒℎ = 	∇ℎ ⋅   

It is also assumed that ℒℎ(x) ≠ 0 for some x = x 
in an open connected set Ω in the state space. Then, in 
a finite neighborhood Ω of x, the input transformation  = ℒ (−ℒℎ + 	)                        (5) 

yields a first-order linear relation between  and a new 
control input , namely ̇ =  
 
3.2 Tracking Control 
 

Consider the problem of tracking a given desired 
trajectory	y(t), and define the tracking error vector by y(t) = y(t) − y(t). Then it is known that, by using 
the following control law,  = ℒ −ℒℎ + ̇ + ,  < 0             (6) 

the output remains bounded and the tracking error  
converges to zero exponentially [4,6]  
 
3.3 Robust Control 
 
3.3.1 Sliding Mode Control 
 

From (3) and (5), the following output error 
dynamics is obtained, ̇ =  + ℒℎ                                    (7) 
 

Since the system under consideration is SISO, the 
“observable” uncertainty, ℒh, lies in the range space of 
the input. Thus the uncertainty term can be considered 
as matched uncertainty   
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For the development of the controller, consider a 
generalized form of the linear output error dynamics 
with matched uncertainty, ̇ =  +  +ξ                         (8) 

where A ∈ ℝ, B ∈ ℝ.  ∈ ℝ is a new control input.  
is assumed to be non-zero and  ∈ ℝ is known. The 
function ξ(y, t)  represents an uncertainty which is 
unknown but has a known upper bound for all y and t. 
 

Then it is possible to write  =  for some  ∈ ℝ. 
Now the uncertain system (8) can be rewritten as  ̇ =  +  + ξ                         (9) 
As a first step, define a sliding surface as  = { ∈ ℝ	 ∶ σ(t) = () = 0,			G ≠ 0}   (10) 
Consider the time derivative of the sliding surface given 
by σ̇(t) = ̇()                         (11) 
Substituting the error dynamics equation (9) into (11) 
gives ̇(t) = ( +  + ξ)             (12) 
It is assumed that the system states are forced to reach 
the sliding surface at time   so that for all 	 ≥   an 
ideal sliding motion can be obtained i.e.  σ(t) = ̇(t) = 0 for ∀t ≥ t 
The equivalent control can be obtained by equating 
equation (11) to zero,  () = −()() + (, )	∀t ≥ t (13) 
The equivalent control can be thought of as the average 
value which the control signal must take to maintain the 
sliding motion on the sliding surface [1,2,3] 
In order to obtain an expression for the sliding motion 
(i.e. the motion while the system is in the sliding mode), 
substituting the value of  () from (13) into (9) ̇ = ( − ())  +  − ())  (14) 

Since the projection term Γ has the property that ΓB = 0, 
by definition, equation (14) reduces to ̇() = () 
i.e. while the system is in the sliding mode, the effect of 
the uncertainty ξ is completely removed. The stability 
of the sliding motion depends on the choice of the 
sliding surface, i.e. . 

Since we don’t know the uncertainty ξ, the equivalent 
control cannot be applied to the system to induce the 
sliding mode. To ensure the sliding motion on the 
surface in finite time, following sliding mode control 
law is suggested [1] 
         = −() − (, )()	 ()	     (15) 
where  (⋅) is the signum function, 	(, ) a scalar 
gain chosen large enough to enforce the sliding motion,  ≥ ‖‖‖‖ +  
where η  is some positive scalar that satisfies the η -
reachability condition [1,2,3], σ()̇() ≤ −‖()‖. 
 
3.3.2 Integral Sliding Mode Control 
 

It is well known that the standard sliding mode 
control loses robustness in the reaching phase. As a 

remedy for the issue, this study adopts the integral 
sliding mode control method. Let’s consider a new 
sliding surface defined as  = { ∈ ℝ	 ∶ σ(t) = () + () = 0,G ≠ 0, z ∈ ℝ}          
where  is to be specified later. 
It is also assumed that the system states are forced to 
reach the sliding surface at time  so that for all 	 ≥  
an ideal sliding motion can be obtained i.e. σ(t) =̇(t) = 0 for ∀t ≥ t and therefore  σ̇(t) = ̇() + ̇() = 0                  (16) 
Furthermore, consider the following form of the control 
input  =  +  
where  is a nominal control input to make the system 
behave as we want when there are no uncertainties or 
disturbances, and  is a control input from the sliding 
surface approach to reject uncertainties. 
Substituting the control input  into the equation (16) 
and enforcing the ideal sliding motion give: σ̇ = ( +  +  + ) + ̇ = 0        (17) 
Consider a control input  () = −(, )	∀t ≥ t             (18) 
By setting  =    in equation (16), we get  ( + ) + ̇ = 0.           (19) 
If we define the dynamics of z(t) by (19), i.e.,  ̇ = 	−( + ), (0) = −(0)     (20) 
then following control input satisfies the sliding motion 
condition:  =  + 	=  −  
Substituting w =  + into equation (8) gives ̇ =  +                         (21) 
The integral sliding function σ is represented by σ =  + (0) − ∫ () + ()     (22) 
One thing to note is that the reaching phase is 
eliminated and σ(0) = 0 is guaranteed by definition. 

Finally we can define an integral sliding mode 
controller that is robust against matched uncertainties 
by  =  +  	=  − (, )()	 (()) (23) 
where   should be greater than any disturbance or 
uncertainty in the system, i.e.,  ≥ ‖‖‖‖ +  
and η  is some positive scalar that satisfies the η -
reachability condition, σ()	̇() ≤ −‖()‖ 

The discontinuous part w  is to enforce a sliding 
mode along the sliding surface, and the continuous, 
nominal control w can be any stabilizing controller as 
discussed in 3.2.  
 
3.4 Optimal Control 
 

In this study, the nominal control w  is designed 
using infinite time linear quadratic optimal control 
method with the following cost function,  =   +

 	  

and, thus, the control law is defined by 
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  =  
where 	 = 	−	 and   is the solution of 
Algebraic Riccati equation 0 = 	 −  −  − 	
 
3.5 Solution to Discontinuous Control Input and 
Chattering 
 

The main drawback of the sliding mode control is 
chattering effect which is mainly due to the fast- 
switching, discontinuous input. The continuous and 
non-switching equivalent control can be obtained by 
averaging the discontinuous switching component in 
(22), via a low pass filter [1], i.e.,   = ave μ		̇ +  =	−(, )()	 (()) 
 

4. Application 
 
4.1 Simulation Model 
 
Consider following reactor model with 1-group delayed 
neuron precursor, ̇ = () + () 
where  = [, ℂ,  , ] P is the reactor power, ℂ the delayed neutron precursor,   the fuel temperature, and    the coolant temperature, 

f(x) = 	
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡  +  +  − Λ P + 	ℂ−ℂ + Λ P 	 − 1	 	(	 −	)(1 − )  + 1	 	 −  1 + 2	 + 2  ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤
 

g(x) = 	 ⎣⎢⎢
⎡000⎦⎥⎥
⎤
,u = 	ρ(control reactivity) 

 
Values of all parameters in the simulation model were 
obtained from [5], which establishes a PWR NPP model 
for 1300 MWe Palo Verde Nuclear Generating Station. 
 
4.2 Simulation Results and Discussion 
 

Three controllers are considered in the simulation 
study, 
•SMC(Sliding mode controller derived in 3.3.1) 

•ISMC(Integral sliding mode controller derived in 3.3.2) 

•LQ(Optimal controller without ) 
To show the robustness of controller, ± 1% parameter 
uncertainties in ,  are considered. 

Figure 1 is the simulation result with LQ controller 
without parameter uncertainties. LQ controller performs 

well in this case but the cases with parameter 
uncertainties the controller fails to track the desired 
reference power trajectory. 

 

 
 

 
Figure 1. LQ control w/o parameter uncertainty 

 
Unlike the LQ controller, both SMC and ISMC 
controllers succeed in reference tracking under ±1%	parameter	uncertainties. 

Figure 2 illustrates the control input from a 
simulation with ISMC. From the start of simulation 
until 20sec, original ISMC (red color) is used and 
filtered control input is applied from 20sec (green color). 
Due to filtering, the discontinuity in control input is 
smoothed.  

 
 

Figure 2. Control Input: ISMC 
Figure 3 shows only the w part of the ISMC control 

input, where green line is switching control input and 
red line is the filtered control input. 
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Figure 3. Control Input Filtering 

 
The effectiveness of ISMC over SMC can be 

visualized by comparison of sliding variable phase 
portraits. Figure 4 and 5 are the phase portraits of ISMC 
and SMC, respectively. The volume of the phase 
portrait shows that ISMC tracks the reference trajectory 
more tightly than SMC 

 

 
Figure 4. Phase Portrait: ISMC 

 
 

Figure 5. Phase Portrait: SMC 
 

 
Acknowledgements 

This work was supported by the nuclear research and 
development program through the national research 
foundation of Korea funded by the Ministry of Science 
and ICT. 
 
 

References 
 

[1]V. Utkin, J. Guldner, and J. Shi, Sliding Mode 
Control in Electromechanical System, Taylor & Francis, 
London, 1999 
[2]L. Fridman and A. Levant, Sliding Mode Control in 
Engineering(Chap. 3), Marcel Dekker, New York, 2002 
[3]M.T. Hamayun, C. Edwards, and H. Alwi, Fault 
Tolerant Control Scheme Using Integral Sliding Modes, 
Springer, Switzerland, 2016 
[4]P.W. Gibbens and M. Fu, “Output Feedback Control 
for Output Tracking of Nonlinear Uncertain Systems”, 
Proc. of the 30th Conference on Decision and Control, 
pp. 2509-2514, 1991. 
[5]S.M. Arda, “Implementing a Nuclear Power Plant 
Model for Evaluating Load-Following”, MSC Thesis, 
May 2013 
[6]J.E. Slotine and W. Li, Applied Nonlinear Control, 
Prentice Hall, 1991 


