

Preliminary Radioactive Contamination Assessment for Decommissioning on Kori unit 1 Bioshield

Korea Nuclear Society Autumn Meeting

Donghyun Lee, Hee Reyoung Kim

calvinj1@unist.ac.kr

RAdiation and MagnetohydroDynamics Advanced Lab

Outline

Introduction

- Nuclear power plant bioshield concrete structure
- Research object
- Research implementation strategy

Case study on similar foreign nuclear power plants

- Comparison on nuclear power plants decommissioning and decontamination environment
- · Literature review on radioactive nuclide kind/ concentration assessment

Assessment on bioshield activation

- Simplification of 3D geometry
- Reactor vessel division cell material properties
- Targeting major radioactive nuclide of interest
- MCNP6 based activation assessment

Bioshield activation distribution analysis

Introduction Nuclear power plant bioshield concrete structure

Introduction Research object

Introduction

Research implementation strategy

Case study on similar foreign nuclear power plants Benchmarking based on previous research

Former NPPs [Table1. Foreign PWR nuclear power plants]								
Plant name	Reactor type	Power (Mw(e))	Operation period (EFPY) (y)	Bioshield range (m)				
Kori 1	PWR	576	40 (27.4)	3.16-5.30				
Trojan	PWR	1095	16 (9)	3.08-5.03				
Kewaunee	PWR	556	39 (21.9)	2.08-				
Connecticut Yankee	PWR	560	28					
Rancho Seco	PWR	913	14 (6)	3.94-4.61				
Shippingport	PWR	72	26 (12)					
Yankee-Rowe	PWR	167	31					
San onofre	PWR	436	24					
Indian Point 1	PWR	257	10					
Three Mile Island	PWR	792	2					
×FEPY (Effective Full Pov	wer Years)		Lack of desig	gn parameters				

Case study on similar foreign nuclear power plants Literature review on similar nuclear power plant

Trojan nuclear power plant

Table2. Trojan nuclear power plant activation history

	30 EFPY (Effective Full Power Year)					
Cooling time	0 years	10 years	100 years			
Core shroud	1.13E+17	9.32E+15	1.66E+15			
Core barrel	2.17E+16	1.79E+15	3.19E+14			
Thermal shield	4.82E+15	3.98E+16	7.09E+13			
Vessel cladding	4.20E+13	3.47E+12	6.17E+11			
Vessel wall	4.33E+14	3.15E+13	9.92E+11			
Upper grid plate	8.03E+14	6.62E+13	1.18E+13			
Lower grid plate	1.82E+16	1.50E+15	2.68E+14			
Bioshield	4.45E+13	2.89E+13	6.12E+11			
Containment	1.80E+14	2.88E+13	6.12E+11			
Totals	1.59E+17	1.31E+16	2.33E+15			

	Radioactivity level in Bq/g						
Sample location(cm)	⁶⁰ Co	¹⁵² Eu	¹⁵⁴ Eu	¹³⁴ Cs			
315.6	7.03E+03	9.25E+03	9.99E+02	3.52E+02			
350	8.14E+01	1.04E+02	1.04E+01	1.85E+00			
380	1.15E+00	1.70E+01	2.04E+00	2.78E-01			
407	2.11E-01	2.96E-01	3.37E-02	7.40E-03			
446	7.03E-03	8.51E-03	None	None			

MCNP6 modeling scheme 3D geometry modeling

[Table2. Kori1. Cell geometry]

Cell	Distance from the core (cm)			
Core	138			
Barrel	142			
Bypass	146			
Thermal shield	155			
Downcomer	167			
Pressure vessel	184			
Air	316			
Concrete	530			

8

[Kyung-Jin Lee(2003), "Preliminary Estimation of Activation Products Inventory in Reactor Components for Kori unit 1 decommissioning", J. Korea Asso, Radiat, Prot. Vol. 28 No. 2: 109-116]

MCNP6 modeling scheme 3D geometry modeling

R

Kori1. N.P.P. reactor vessel 3D geometry

MCNP6 modeling scheme Reactor vessel input design

Kori1. N P P reactor vessel nuclei concentration data base

Nuclide	Mass number	Co	ore	Stainles	ss steel	Pressure	e vessel	Bypass Downo er)	orner(wat	Cond	crete	а	ir
		Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight	Number	Weight
²³⁵ U	235	1.15E-04	4.50E-26										
²³⁸ U	238	6.64E-03	2.63E-24										
²³⁹ Pu	239	3.70E-05	1.47E-26										
²⁴⁰ Pu	240	8.86E-06	3.53E-27										
²⁴¹ Pu	241	3.57E-06	1.43E-27										
¹ H	1	2.76E-02	4.59E-26					4.83E-02	8.02E-26	7.41E-03	1.23E-26		
¹⁶ O	16	2.68E-02	7.13E-25					2.41E-02	6.42E-25	4.21E-02	1.12E-24	1.05E-03	2.79E-26
¹⁰ B	10	2.30E-06	4.E-29					4.31E-06	7.15E-29				
¹¹ B	11							1.77E-05	3.23E-28				
²⁷ AI	27	1.13E-06	5.05E-29							2.28E-03	1.02E-25		
¹² C	12	3.57E-06	7.11E-29	3.17E-04	6.32E-27	8.67E-04	1.73E-26					7.49E-07	1.49E-29
²⁸ Si	28			1.69E-03	7.88E-26	4.38E-04	2.04E-26			1.52E-02	7.09E-25		
⁵⁰ Cr	50	5.51E-07	4.58E-29	7.56E-04	6.28E-26	1.27E-05	1.05E-27						
⁵² Cr	52	1.06E-05	9.17E-28	1.46E-02	1.26E-24	2.44E-04	2.11E-26						
⁵³ Cr	53	1.21E-06	1.06E-28	1.65E-03	1.45E-25	2.77E-05	2.44E-27						
⁵⁴ Cr	54	3.00E-07	2.69E-29	4.11E-04	3.69E-26	6.89E-06	6.18E-28						
⁵⁵ Mn	55	2.16E-06	1.97E-28	1.73E-03	1.80E-50	5.43E-06	4.96E-28						
⁵⁴ Fe	54	3.60E-06	3.23E-28	3.44E-03	3.09E-25	4.86E-03	4.36E-25						
⁵⁶ Fe	56	5.60E-05	5.21E-27	5.35E-02	4.98E-24	7.55E-02	7.02E-24			2.98E-04	2.77E-26		
⁵⁷ Fe	57	1.28E-06	1.21E-28	1.23E-03	1.16E-25	1.73E-03	1.64E-25						
⁵⁸ Fe	58	1.71E-07	1.65E-29	1.63E-04	1.57E-26	2.31E-04	2.22E-26						
⁵⁸ Ni	58	9.91E-05	9.55E-27	5.10E-03	4.92E-25	4.01E-04	3.86E-26						
⁶⁰ Ni	60	3.08E-05	3.07E-27	1.97E-03	1.96E-25	1.54E-04	1.54E-26						
⁶¹ Ni	61	1.66E-06	1.68E-28	8.55E-05	8.66E-27	6.71E-06	6.80E-28						
⁶² Ni	62	5.52E-06	5.68E-28	2.72E-04	2.81E-26	2.14E-05	2.20E-27						
⁶⁴ Ni	64	1.35E-06	1.43E-28	6.94E-05	7.38E-27	5.45E-06	5.79E-28						
⁹⁶ Mo	96					2.81E-04	4.48E-26						
⁹¹ Zr	91	4.52E-03	6.83E-25										
²³ Na	23									1.00E-03	3.82E-26		
²⁴ Mg	24									1.42E-04	5.65E-27		
³² S	32									5.38E-05	2.86E-27		
³⁹ K	39									6.61E-04	4.28E-26		
⁴⁰ Ca	40									2.78E-03	1.85E-25		
	Total	6.60E-02	4.15E-24	8.70E-02	7.74E-24	8.48E-02	7.81E-24	7.24E-02	7.22E-25	7.20E-02	2.24E-24	1.05E-03	2.79E-26
I	Density		4.15		7.74		7.81		0.722		2.24		0.0279

[Table4. Kori NPP unit 1 reactor vessel structural nuclei concentration]

MCNP6 input

- Weight fraction
- Atom density fraction
- Structural density
- Structural volume

Activation degree analysis Targeting major radioactive nuclide

R

Target radioactive nuclei selection

- Selection criteria (⁶⁰Co)
 - Major long-living γ radiation nuclei
 - Relatively simple decay chain
 - Assumption: Large impurity

Table5. Former radioactive nucleus on bioshield						
			A	fter shut	tdown (y	r)
Nuclide	Half life (yr)	Radioactivit y (Bq/g)	10	30	50	100
⁵¹ Cr	0.07	1.50E+02				
⁵⁴ Mn	0.85	3.20E+02	4.20E- 07			
⁵⁵ Fe	2.737	5.10E+03	1.70E- 03	9.90E- 06	5.70E- 08	
⁵⁹ Fe	0.12	1.90E+02				
⁵⁸ Co	0.19	1.60E+03				
⁶⁰ Co	5.27	1.70E+04	2.00E- 02	1.40E- 03	1.00E- 04	1.40E- 07
⁸⁹ Sr	0.14	2.60E+00				
⁹⁰ Sr	28.79	9.30E+01	5.40E- 04	3.40E- 04	2.10E- 04	6.30E- 05
⁹⁰ Y	0.007	9.30E+01	5.40E- 04	3.40E- 04	2.10E- 04	6.30E- 05
⁹⁵ Zr	0.18	5.70E+01				
⁹⁵ Nb	0.09	5.70E+01				
^{129m} Te	0.09	6.90E+01				
131	0.02	3.10E+03				
¹³⁴ Cs	2	2.70E+04	4.10E- 03	4.80E- 06	5.40E- 09	
¹³⁶ Cs	0.04	2.50E+02				
¹³⁷ Cs	30	1.70E-01	5.90E- 01	3.70E- 01	2.40E- 01	7.40E- 02

• $\frac{dn(t)}{dt} = \sigma * \phi * capacitiv factor - \lambda n(t)$ • rate of production - rate of loss

Activation degree analysis

Targeting major radioactive nuclide

Radioactive decay with production (time dependence)

- n(t): number of nucleus on time t
- σ : microscopic cross section
- ϕ : neutron flux
- capacity factor : 0.9 (40 year)
- λ : decay constant $\left(\frac{ln2}{half \ life}\right)$
- $n(t) = \frac{R}{\lambda} (1 e^{-\lambda t})$

[Table6. Assumed radioactive nucleus on bioshield]

Element	Weight Fraction	Weight (g)		
Н	0.006	13.8		
С	0.175	402.4		
0	0.41	942.75		
Mg	0.033	75.88		
Al	0.11	25.29		
Si	0.035	80.48		
К	0.001	2.3		
Ca	0.321	738.11		
Fe	0.008	18.4		
Eu	2.94E-07	6.77E-04		
Со	2.55E-06	5.86E-03		
Total		2299.4		
Density	2.2994 g/cc			

Results and discussion Bioshield activation assessment

- Average cell neutron flux distribution (#/cm²sec)
 - Max: 4.62E+07
 - Min: 6.54E-45
 - Space: Non detected

		00 110				
	291.5	344.5	397.5	450.5	503.5	Radius (cm)
1485-1375	2.62E-20	3.44E-26	2.39E-38	0.00E+00	0.00E+00	
1375-1255	3.98E-18	6.10E-22	8.39E-49	0.00E+00	0.00E+00	
1255-1135	1.72E-14	2.08E-14	0.00E+00	0.00E+00	0.00E+00	
1135-1015	3.15E+02	1.87E-16	0.00E+00	0.00E+00	0.00E+00	
1015-895	9.91E+00	5.33E-13	0.00E+00	7.60E-29	1.21E-24	
895-775	5.59E-07	6.48E-09	6.11E-23	2.98E-21	1.23E-16	
775-655	1.06E+02	4.12E+01	3.87E-16	7.38E-13	1.32E-12	
645-535	3.55E+03	2.04E+00	6.31E-11	2.84E-10	5.25E-10	
535-415	4.47E+03	8.65E+00	1.64E-07	1.60E-07	1.57E-07	
415-295	2.69E+04	1.92E+02	9.22E-06	3.94E-08	3.00E-08	
295-175	7.37E+03	1.90E+03	1.21E-04	2.22E-07	1.84E-07	
175-5	2.20E+03	4.38E+02	4.13E-03	6.34E-06	1.07E-07	
Height (cm)						-

[Table7 60Co neutron flux distribution]

R

Results and discussion Bioshield activation assessment

- ⁶⁰Co radioactivity distribution on Kori NPP Unit 1
 - Max: 7.11E+04 Bq/g
 - Min: 1.01E-47 Bq/g
 - Space: Not detected

	[Table]	8. ⁶⁰ Co radioa	activity validation]
Distance (cm)	Kori-1 (Bq/g)	Trojan (Bq/g)	Difference Ratio (Trojan/Kori-1)
291.5	4.E+03	7.E+03	2.E+00
344.5	2.E+02	8.E+01	4.E-01
397.5	4.E-04	1.E+00	3.E+03
450.5	6.E-07	2.E-01	4.E+05
503.5	4.E-08	1.E-03	3.E+04

Results and discussion Bioshield activation distribution analysis

- Mesh average ⁶⁰Co Radioactivity on Bioshield region
 - Clearance criteria
 - KAERI/AR-800/2008
 [1bq/g]: 70% volume
 - Clearance value
 - Radius range: 150cm (350cm - 500cm)
 - Height range: 470cm (1015cm - 1485cm)
 - Radius < Height

Conclusion Conclusion & Future plan

- Conclusion
 - ⁶⁰Co radioactivity distribution on Kori unit 1 Bioshield
 - Max: 7.11E+04 Bq/g
 - Min: 1.01E-47 Bq/g
 - Clearance volume: 70% (Further analysis required)
- Future plan
 - Multi nucleus decay system consideration
 - ¹⁵²Eu and ¹⁵⁴Eu
 - Geometry specification
 - Reinforcing bar modeling (Fe)
 - Concrete type (impurity concentration)

[Fig9. Extra radionuclide assessment ex)]

