# Assessment of Scalability from Numerical Simulation of Air Flow through RCCS Riser of NACEF and NSTF

Yoon Y. Bae, Chan-Soo Kim, Jong-hwan Kim, Eung-Seon Kim, Minhwan Kim HTGR Development Division KAERI





□ Introduction of RCCS and Scaling of HTC

Numerical Simulation of Air Flow in Riser

□ Assessment of Scaling Law

Conclusions



### PMR200 RCCS RIser

#### □ Arrangement of RCCS Duct





### NACEF

#### RCCS Schematic (part)







#### **NACEF Heater Box**





# Introduction

#### I-NERI program

- Comparative study of RCCS riser heat removal capability
- Scale-down only in the vertical direction
  - ✤ KAERI, NACEF: ¼ scale
  - ♦ ANL, NSTF: ½ scale
  - ♦ U. of Wisconsin: ¼ scale
- Scaling analysis
  - Heat transfer coefficient
    - Forced convection:  $h_R = \ell_R^{0.4}$
    - Natural convection:  $h_R = 1$
    - Mixed convection:  $h_R = ?$
- Unusual relations between NACEF and NSTF tests
- Necessity of numerical analysis was identified

#### **Computational Domain**





# **Initial and Boundary Conditions**

|                                  | KAI        | ERI        | ANL        |            |  |
|----------------------------------|------------|------------|------------|------------|--|
| Case                             | $Pl_R = 1$ | $Ri_R = 1$ | $Pl_R = 1$ | $Ri_R = 1$ |  |
| ID                               | NACEF-4    | NACEF-5    | NSTF-2     | NSTF-1     |  |
| u <sub>in</sub> , m/s            | 0.98       | 1.8        | 1.46       | 2.35       |  |
| <i>T<sub>in</sub></i> , <b>K</b> | 290        | 290        | 290.8      | 295.5      |  |
| <i>Re</i> <sub>in</sub>          | 4455       | 8167       | 7219       | 11210      |  |
| <i>L</i> <sub>1</sub> , <b>m</b> | 1.0        |            | 0.17       |            |  |
| <i>L<sub>h</sub></i> , <b>m</b>  | 4.0        |            | 6.83       |            |  |
| L <sub>2</sub> , <b>m</b>        | 0.0        |            | 0.40       |            |  |
|                                  |            |            |            |            |  |
| Turbulence<br>model              | RNG-TL     | MK         | RKE-TL     | RKE-TL     |  |



# **Computational Method**

- □ 3-D FVM
- □ SIMPLE algorithm
- **Grid numbers**  $(x \times y \times z)$ 
  - NACEF: 200 x 40 x 100
  - NSTF: 270 x 40 x 100
- $\Box y^+ < 0.5$
- $\Box k_{in} = 1.5 u_{in}^2 T i^2$  and  $\varepsilon = 10^2 k$ , T i=0.1%
- □ Boundary condition for energy eq. : T(z) from experiment



#### **Numerical Results**



 $Pl_R = 1$ , NACEF-4

 $Ri_R = 1$ , NACEF-5



# **Numerical Results**



 $Pl_R = 1$ , NSTF-2

 $Ri_R = 1$ , NSTF-1

Note: The lines for  $z=0.5 Z_1$  and  $0.75 Z_1$  were nearly overlapped.



KNS Fall Meeting, Gyeongju, October 26-27, 2017

# Variation of Reduced Nusselt Number

- $\square Bo = Gr_b / (Re_b^{2.625} Pr_b^{0.4}), Gr = g\beta (T_w T_b) D^3 / v^2, Re = ud / v$
- $\Box$   $Nu_b$ : evaluated by the Gnielinski correlation
- The results clearly requires a scaling based on Bo rather than Re.





# Variation of Reduced Nusselt Number

|                    |             | ANL                                              |                                                  | KAERI                 |                       |
|--------------------|-------------|--------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------|
| Case               |             | $\begin{array}{l} NSTF-1\\ Ri_R = 1 \end{array}$ | $\begin{array}{l} NSTF-2\\ Pl_R = 1 \end{array}$ | NACEF-5<br>$Ri_R = 1$ | NACEF-4<br>$Pl_R = 1$ |
| Nu/Nu <sub>b</sub> |             | 1.064                                            | 0.781                                            | 0.714                 | 1.158                 |
| Во                 | Numerical   | 0.154                                            | 0.635                                            | 0.643                 | 1.939                 |
|                    | Scaling Law | 0.222*                                           |                                                  | 0.643                 |                       |



# **Scaling Law**

- □ Based on Symolon Correlation:  $Bo_q = Gr_q / (Re_b^3 P r_b^{0.5})$ 
  - Temperature-based  $Gr_q$  was used for convenience.

• 
$$(Bo_q)_R = \frac{(Bo_q)_m}{(Bo_q)_p} = \begin{cases} \ell_R^{-2} \text{ for } Ri_R = 1\\ \ell_R^{-3} \text{ for } Pl_R = 1 \end{cases}$$

Nusselt number can be estimated from the SNU correlation.

• 
$$\frac{Nu}{Nu_T} = \left\{ \begin{bmatrix} \frac{\left(\frac{9.2320 \times 10^{-5}}{Bo_q}\right)^{4.0330}}{1 + \left(\frac{9.2320 \times 10^{-5}}{Bo_q}\right)^{4.0330}} \\ 1 + \left(\frac{9.2320 \times 10^{-5}}{Bo_q}\right)^{4.0330} \end{bmatrix}^{4.7420} + \right\}^{0.2109}$$



# Conclusions

- Numerical simulation of buoyancy influenced flow field
  - Selection of turbulence model was very important.
  - Low-Re k- $\varepsilon$ , RNG-TL, RKE-TL worked in our cases.
- When buoyancy is involved
  - The value of *Bo* should be checked whether heat transfer mode is mixed convection
  - Heat transfer coefficient estimation should be made via buoyancy parameter.



### **Comment Resolutions**

- □ The boundary conditions are not available for the prototype.
  - Attempts are being made to simulate whole part of RCCS (cavity + riser s +chimneys)
  - ANL's results are not promising
  - Due to the limitation of computation resources, KAERI is attempting to simulate only a part of system (cavity + risers)
- SNU is now developing a new correlations based on the correlation proposes by Symolon, which is generally overlaps on the Jackson correlation.
- Since we already know from the earlier experiences that the standard k-ɛ model totally failed in the simulation of NACEF test, we did not even attempt to use it.
  - Unrealistic turbulence model did not result in a converged solution.

