

Transactions of the Korean Nuclear Society Autumn Meeting Kyungju, Korea, October 26 – 27, 2017

APR1400 Pressurizer System Performance Criteria

Pham Hoai Phuong Lee Yong Kwan phuongph.re@dnri.vn leeyk@kings.ac.kr KINGS, Ulsan, Korea

Transactions of the Korean Nuclear Society Autumn Meeting Kyungju, Korea, October 26 – 27, 2017

Establishment Performance Criteria of APR1400 Pressurizer System

Contents

- Introduction
- Performance Criteria Establishment Process and Results for APR1400 PRZ System
- Conclusion

➤ Maintenance rule at NPPs is required to:

• Clear link between effective maintenance and safety as it relates to the number of transients and challenges to safety systems and the associated need for operability, availability, and reliability of safety equipment

• Ensure that failure of other than safety related SSCs that could initiate or adversely affect a transient or accident is minimized

• Ensure that design assumptions and margins in the original design basis are maintained and are not unacceptably degraded

Establishment of SSCs performance criteria for maintenance rule implementation is one of the most parts to satisfy MR

The establishment of specific performance criteria for APR1400 Pressurizer system such as RPC, APC, and CMC are to provide a basis for determining whether the function is under satisfactory performance (a)(2) or need goal setting (a)(1) of MR.

Performance Criteria Establishment Process for APR1400 PRZ System

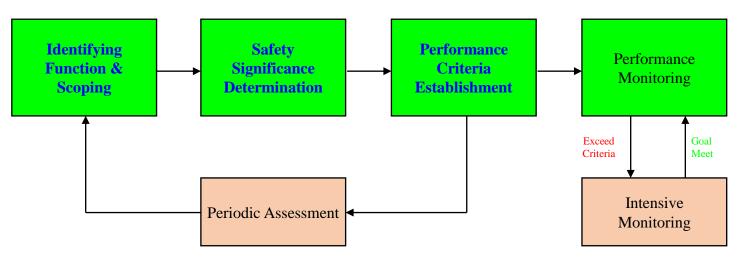


Fig. 1 Process for the maintenance effectiveness monitoring program development

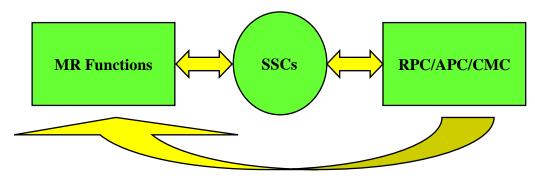


Fig. 2 Interactions of Functions/SSCs and PC

Functional Analysis (1/3)

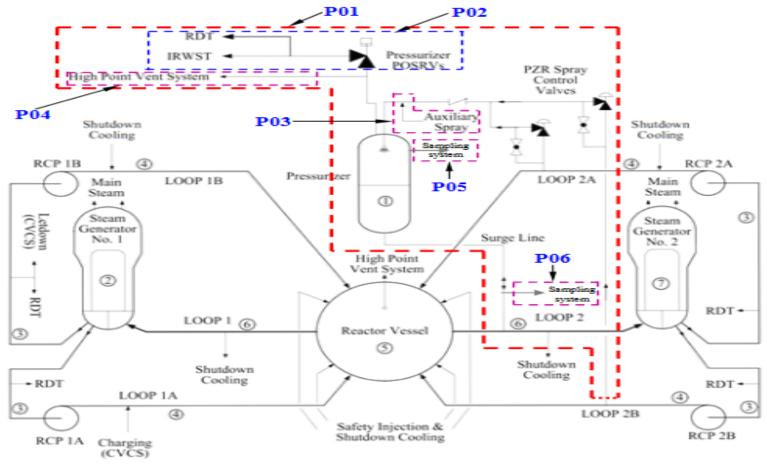
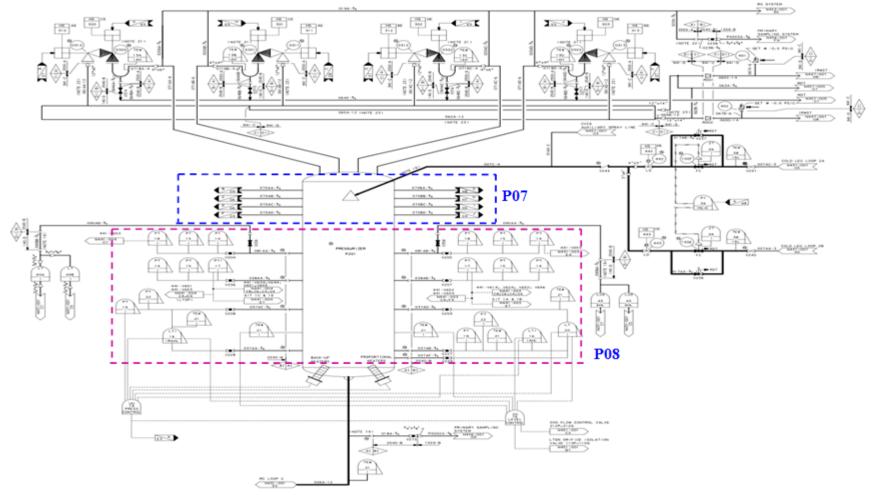



Fig. 3 Reactor Coolant system Schematic Flow Diagram

*** RDT: Reactor Drain Tank; IRWST: In-Containment Refueling Water Storage Tank; POSRV: Pilot Operated Safety Relief Valve; RCGVS: Reactor Coolant Gas Vent System

Functional Analysis (2/3)

Fig. 4 Pressurizer and POSRV P&ID

Functional Analysis (3/3)

Table 1 Functions list of APR1400 Pressurizer system

FID	Function Description
P-01	To maintain RCS operating pressure and compensate for changes in reactor coolant volume during load changes
P-02	To provide overpressure protection for the reactor coolant pressure boundary
P-03	To permit Pressurizer spray during plant heat-up, or to allow cooling if the reactor coolant pumps are shutdown
P-04	To allows non-condensable gases to be vented to the RCGVS during post-accident operations when these gases may be collected in the PZR steam space
P-05	To provide gaseous samples for analysis in order to provide a basis for control of the RCS chemistry and radiochemistry during normal operation
P-06	To provide liquid samples for analysis in order to provide a basis for control of the RCS chemistry and radiochemistry during normal operation
P-07	To generate input signal for reactor protection when high or low Pressurizer pressure
P-08	To generate input signal for controlling Pressurizer pressure and level

SSC Scope Analysis in MR (1/2)

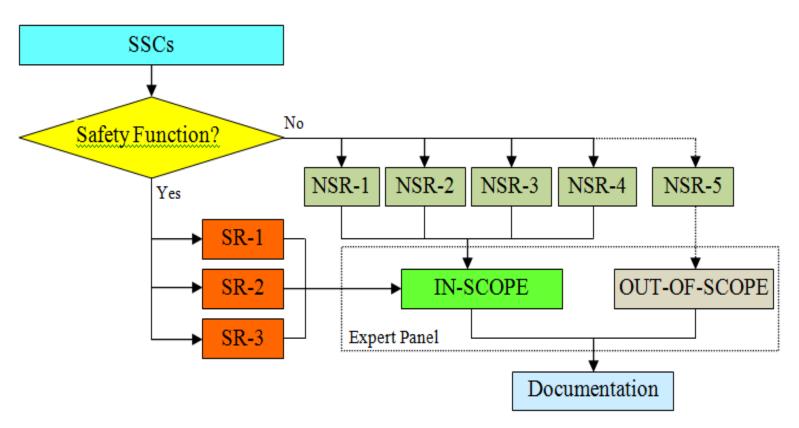


Fig 5. MR scoping determination process diagram

SSC Scope Analysis in MR (2/2)

Table 2 APR1400 PRZ SSC In or Out scope of MR

FID	SR-1	SR-2	SR-3	NSR-1	NSR-2	NSR-2 NSR-3 NS		Scope In/ Out
P-01	Y	Y	Y	Ν	Ν	N	N	In
P-02	Y	N	Ν	N	N	N	N	In
P-03	N	Y	N	N	N	N	N	In
P-04	Y	N	N	N	N	N	N	In
P-05	N	N	N	N	N	N	N	Out
P-06	N	N	N	N	N	N	N	Out
P-07	Y	N	N	N	N	N	N	In
P-08	Y	Y	Y	N	N	N	N	In

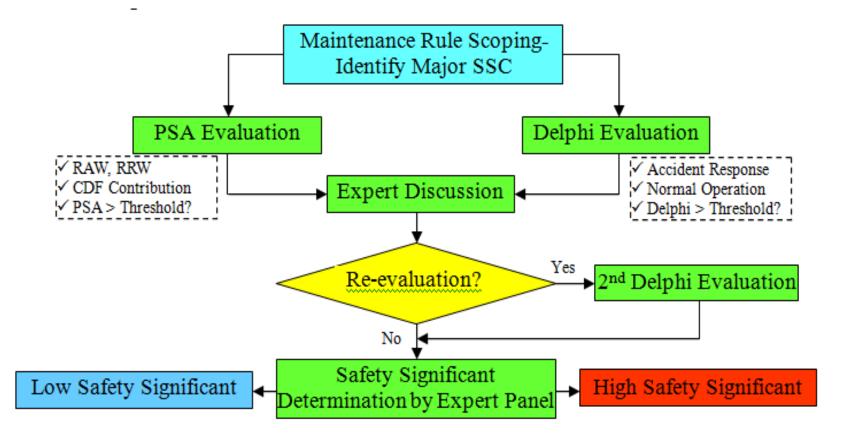


Fig. 6 Safety significance determination process

Delphi Method

Table 3 Delphi method survey result for safety significancedetermination of APR1400 Pressurezer system

FID	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total Score	Significance
P-01	110	213	22.5	28.5	7.1	7.8	5.5	6.7	7.7	5.7	414	HSS
P-02	110	213	22.5	143	7.1	7.8	5.5	6.7	7.7	5.7	528	HSS
P-03	175	213	22.5	28.5	21.3	7.8	5.5	6.7	7.7	5.7	494	HSS
P-04	175	170.4	22.5	28.5	7.1	7.8	5.5	6.7	7.7	5.7	437	HSS
P-07	153	213	22.5	28.5	7.1	7.8	5.5	6.7	7.7	5.7	458	HSS
P-08	153	170.4	22.5	28.5	7.1	7.8	5.5	6.7	7.7	5.7	415	HSS
						1		1 (1 0				

Threshold: $-15\% \leq$ Threshold $(404) \leq +5\%$

Safety Significance Determination

PSA Method

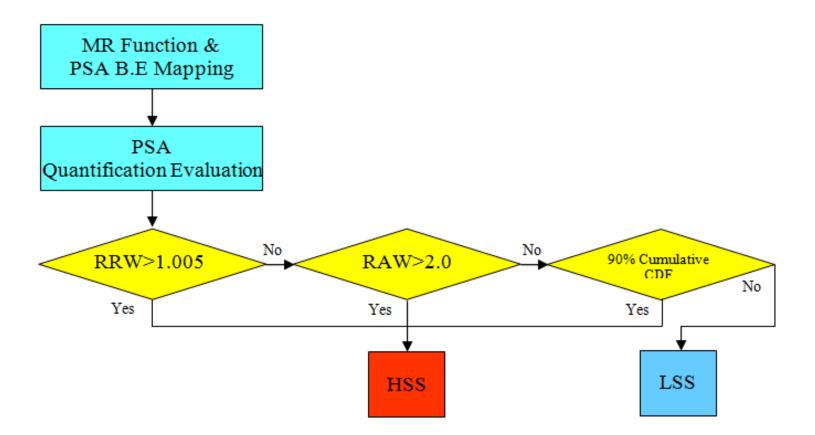


Fig. 7 PSA for risk significance determination process

Safety Significance Determination

Table 4 Safety significance determination results using PSA

	_		PSA I	Result	Thr	eshold	Safety Significance
ID Component	Event	PROB.	RAW	RRW	RAW≥2	RRW≥1.005	(HSS/LSS)
PZR heaters	HXY	1.100E-05	2.412E+01	1.000E+00	High	Low	HSS
CV244	CVO	2.000E-04	3.625E+03	3.635E+00	High	High	HSS
CV244	CVC	2.380E-04	2.412E+01	1.011E+00	High	High	135
	MVO	9.630E-04	2.412E+01	1.047E+00	High	High	
	MVC	9.630E-04	2.412E+01	1.047E+00	High	High	
MV242, MV243	MVT	8.140E-07	2.412E+01	1.000E+00	High	Low	HSS
	MVFC	1.590E-06	2.412E+01	1.000E+00	High	Low	
	MVSO	7.870E-14	2.412E+01	1.000E+00	High	Low	
AV100F, AV100E	AVO	2.220E-05	3.625E+03	1.087E+00	High	High	HSS
	AVG	7.000E-05	2.412E+01	1.195E+00	High	High	
	VVO	1.920E-04	2.412E+01	1.004E+00	High	Low	
V237, V241; V236, V240	VVC	1.920E-04	2.412E+01	1.004E+00	High	Low	HSS
	VVT	2.020E-06	2.412E+01	1.000E+00	High	Low	
	PVO	1.700E-05	2.810E+02	1.005E+00	High	High	
PV200, PV201, PV202, PV203	PVC	2.160E-07	2.412E+01	1.000E+00	High	Low	HSS
	PVSO	1.050E-12	2.412E+01	1.000E+00	High	Low	
	MVO	9.630E-04	2.412E+01	1.047E+00	High	High	
	MVC	9.630E-04	2.412E+01	1.047E+00	High	High	
MV385, MV386	MVT	8.140E-07	2.412E+01	1.000E+00	High	Low	HSS
	MVFC	1.590E-06	2.412E+01	1.000E+00	High	Low	4
	MVSO	7.870E-14	2.412E+01	1.000E+00	High	Low	
	RVC	2.530E-07	2.412E+01	1.000E+00	High	Low	4
RV300, RV301; RV302, RV303; RV304, RV305; RV306, RV307	RVO	2.540E-06	2.412E+01	1.000E+00	High	Low	HSS
	RVSO	7.210E-13	2.412E+01	1.000E+00	High	Low	
	SVO	2.280E-05	3.625E+03	1.090E+00	High	High	1
	SVC	2.280E-05	3.625E+03	1.090E+00	High	High	
SV203	SVFC	1.120E-05	2.412E+01	1.001E+00	High	Low	HSS
	SVSO	3.350E-14	2.412E+01	1.000E+00	High	Low	
	SVT	4.030E-05	2.412E+01	1.002E+00	High	Low	
V431	CVO	2.000E-04	3.625E+03	3.635E+00	High	High	HSS
	CVC	2.380E-04	2.412E+01	1.011E+00	High	High	
	SVO	2.280E-05	3.625E+03	1.090E+00	High	High	
	SVC	2.280E-05	3.625E+03	1.090E+00	High	High	1100
SV410, SV411, SV412, SV413, SV419, SV420, SV418	SVFC	1.120E-05	2.412E+01	1.001E+00	High	Low	HSS
	SVSO	3.350E-14	2.412E+01	1.000E+00	High	Low	
	SVT RVC	4.030E-05 2.530E-07	2.412E+01 2.412E+01	1.002E+00 1.000E+00	High	Low Low	
DV1420 DV1421	RVC			1.000E+00 1.000E+00	High		HSS
RV1430,RV1421		2.540E-06	2.412E+01		High	Low	пээ
	RVSO	7.210E-13	2.412E+01	1.000E+00	High	Low	
PT-101A, PT-101B, PT-101C, PT-101D, PT-102A, PT-102B, PT-102C, PT-102D	РТОР	1.970E-05	2.412E+01	1.001E+00	High	Low	HSS
PT199X, PT199Y	PTOP	1.970E-05	2.412E+01	1.001E+00	High	Low	HSS
TEW19A, TEW19B, TEW19C, TEW21A, TEW21B	TTOP	2.020E-05	3.625E+03	1.079E+00	High	High	HSS
LT18, LT14(2), LT40A(2), LT40B(2)	LTOP	2.450E-06	2.412E+01	1.000E+00	High	Low	HSS
PT12(4), PT13(4), PT15(2), PT16(2), PT17(2), PT20(2)	PTOP	1.970E-05	2.412E+01	1.001E+00	High	Low	HSS

SA analysis RRW and AW was using one AREX odels/code, data put ed was the omponent ilure basic ents and eir obabilities

Table 5 Final result for SSC safety significance determination of APR1400 PRZ system

FID	SSC.	DCA D E Morring	PSA	Delphi	Final
FID	SSCs	PSA B.E Mapping	Result	Result	Result
	Heaters	PZR heaters	HSS	HSS	HSS
		CV244	HSS	HSS	HSS
P-01	PZR	MV242, MV243	HSS	HSS	HSS
	Spay	AV100F, AV100E	HSS	HSS	HSS
		V237, V241; V236, V240	HSS	HSS	HSS
P-02	POSRVs	PV200, PV201, PV202, PV203	HSS	HSS	HSS
P-03	Aux.	SV203	HSS	HSS	HSS
1-05	Spray	V431	HSS	HSS	HSS
P-04	RCGVS	SV410, SV411, SV412, SV413, SV419, SV420, SV418	HSS	HSS	HSS
		RV1430, RV1421	HSS	HSS	HSS
P-07	PT	PT-101A, PT-101B, PT-101C, PT-101D, PT-102A, PT-102B, PT-102C, PT-102D	HSS	HSS	HSS
		PT199X, PT199Y	HSS	HSS	HSS
		TEW19A, TEW19B, TEW19C, TEW21A, TEW21B	HSS	HSS	HSS
P-08	PT, TT, LT	LT18, LT14(2), LT40A(2), LT40B(2)	HSS	HSS	HSS
		PT12(4), PT13(4), PT15(2), PT16(2), PT17(2), PT20(2)	HSS	HSS	HSS

Performance Criteria Establishment

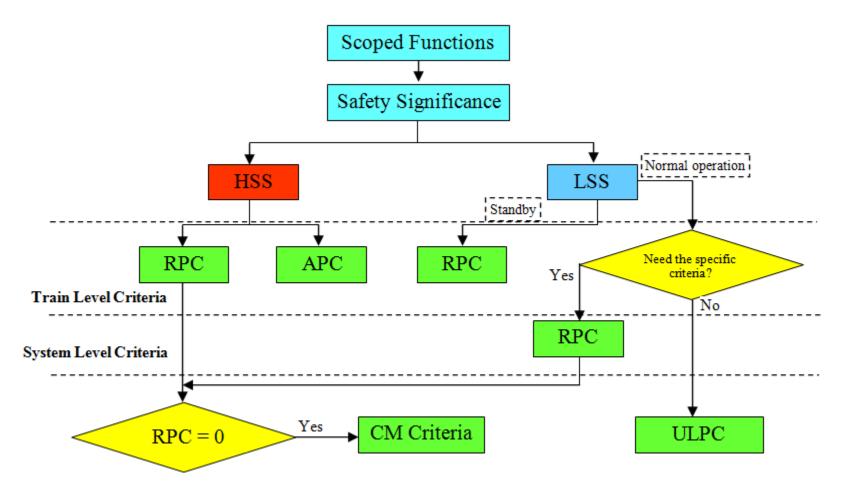


Fig. 8 PC selection establishment process

Performance Criteria Establishment

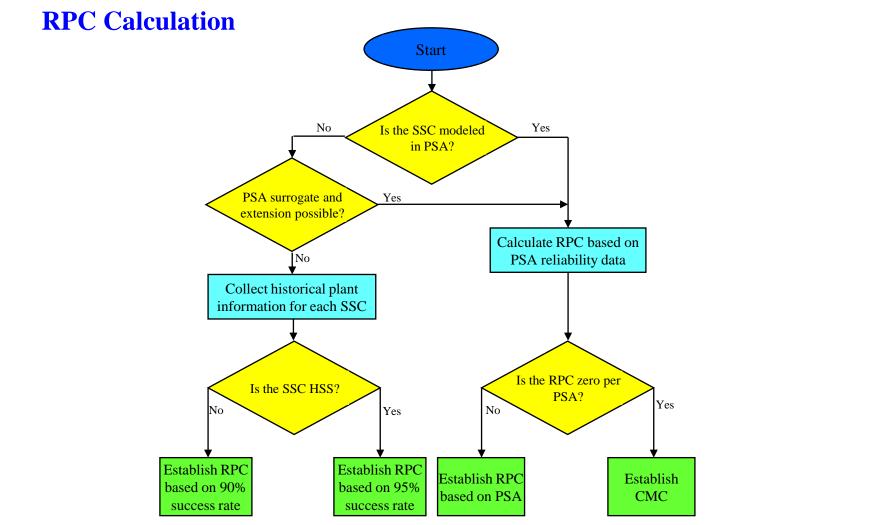
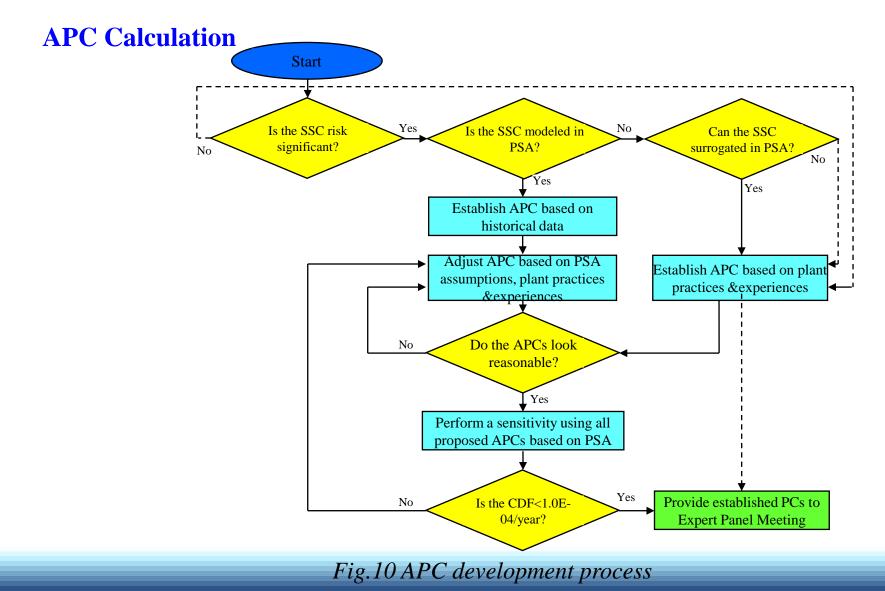


Fig. 9 RPC development process

RPC Calculation


> RPC were determined using EPRI methodology for the case of SSCs modeled in PSA and for the case in which PSA extended application is possible

➢ Data sources for significance determination results using PSA reference to APR1400 DCD Tier2, APR1400 SSAR, and NUREG/CR-6928

> The time period or mission time are considered every refueling cycle (18 months).

Performance Criteria Establishment

APC Calculation

➢ APC is established for HSS SSCs

 \succ If functions of SSCs are modeled in the probabilistic safety assessment, APC will determine based on the PSA data

> Another situation, APC will determine referring to Allowable Out-ofservice Time (AOT) or maintenance hours if functions of SSCs are not modeled in the probabilistic safety assessment (APC = RPC x AOT)

Performance Criteria Establishment

Table 6 Performance criteria of APR1400 PZR System

FID	SSCs	Key SSC	Failure Mode	Safety Significance	RPC (number of failures)	АОТ	APC	CL	ML
	Heaters	PZR heaters	HXY	HSS	0	72 hr	0 hr	Train	Train
		CV244	CVO	HSS	0	4 hr	0 hr	Train	Train
		C V244	CVC	HSS	1	4 111	4 hr	Train	Train
			MVO	HSS	1		4 hr	Train	Train
			MVC	HSS	1		4 hr	Train	Train
P-01		MV242, MV243	MVT	HSS	0	4hr	0 hr	Train	Train
	PZR Spray		MVFC	HSS	0		0 hr	Train	Train
			MVSO	HSS	0		0 hr	Train	Train
		AV100F, AV100E	AVO	HSS	0	4 hr	0 hr	Train	Train
		,	AVG	HSS	0		0 hr	Train	Train
		V237, V241; V236, V240	VVO	HSS	0	4 hr	0 hr	Train	Train
			VVC PVO	HSS HSS	0		0 hr	Train Train	Train
P-02	POSRVs	PV200, PV201, PV202, PV203	PVO	HSS	0	0.25 hr	0 hr 0 hr	Train	Train Train
P-02			PVC	HSS	0		0 hr	Train	Train
	Aux. Spray	SV203	SVO	HSS	0	4 hr	0 hr	Train	Train
			SVC	HSS	0		0 hr	Train	Train
			SVFC	HSS	0		0 hr	Train	Train
P-03			SVSO	HSS	0		0 hr	Train	Train
1-05			SV50	HSS	0		0 hr	Train	Train
			CVO	HSS	0		0 hr	Train	Train
		V431	CVC	HSS	0	4 hr	0 hr	Train	Train
			SVO	HSS	0	72 hr	0 hr	Train	Train
			SVC	HSS	0		0 hr	Train	Train
		SV410, SV411, SV412, SV413, SV419, SV420, SV418	SVFC	HSS	0		0 hr	Train	Train
P-04	RCGVS		SVSO	HSS	0		0 hr	Train	Train
			SVT	HSS	0		0 hr	Train	Train
		RV1430	RVO	HSS	0	72 hr	0 hr	Train	Train
		KV1450	RVSO	HSS	0	72 111	0 hr	Train	Train
P-07	РТ	PT-101A, PT-101B,PT-101C, PT-101D,PT-102A, PT-102B, PT-102C, PT-102D, PT199X, PT199Y	РТОР	HSS	0	72 hr	0 hr	Chanel	Chanel
		TEW19A, TEW19B, TEW19C, TEW21A, TEW21B	TTOP	HSS	0	72 hr	0 hr	Chanel	Chanel
P-08	PT, TT, LT	LT18, LT14(2), LT40A(2), LT40B(2)	LTOP	HSS	0	72 hr	0 hr	Chanel	Chanel
1-00		PT12(4), PT13(4), PT15(2), PT16(2), PT17(2), PT20(2)	РТОР	HSS	0	72 hr	0 hr	Chanel	Chanel

The APR1400 Pressurizer system performance criteria establishment for MR implementation is done with purpose to provide a basis for determining whether the function is under satisfactory performance (a)(2) or need goal setting (a)(1) of MR

> Most of APCs are less than or equal to 4 hours, and dominant RPCs are 0 or 1 time

 \succ The results is necessary to review by expert panel with reflection of plant experiences and practices

> PC can be changed when PM base is changed and PSA results changed