A Study on Effective Temperature of CSBA-loaded UO2 Fuel Pellet

Anisur Rahman, Xuan Ha Nguyen, Yonghee Kim*

Korea Advanced Institute of Science and Technology (KAIST)

**Corresponding author: yongheekim@kaist.ac.kr*

October 26, 2017

Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 25-27, 2017

Outline:

1. Introduction 2. Objective 3. CSBA Design 4. Methodology **5.** Numerical Results 6. Conclusion

Introduction

- Inherent safety and reliability are highly required for next-generation reactors.
- Reduction of dependence on active control systems can increase the autonomous operation.
- Soluble boron for reactivity control during the cycle is improper to meet the inherent safety.
- Soluble-Boron- Free reactor design might be feasible with innovative Burnable Absorber design concept.

Introduction: Innovative CSBA Design

Centrally-shielded Burnable Absorber (CSBA)

• Design concept:

CSBA fuel rod is a typical PWR UO_2 pellet with lumped spherical gadolinia balls inside the fuel pellet.

Top view

Requirement Study?

Temperature profile of the CSBA loaded fuel will be **different** compare to **typical PWR fuel pellet**. Detail Temperature profile is required for further study related with temperature.

Side view

ATOM¹ Core Configuration

Serpent model of the ATOM core

0		0	0	0	0	0	0	0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	Ш
0		0	0	0	0	0	0	 0	0	0	
ŏ		ŏ	ŏ	ő	ŏ	ŏ	õ	 õ	ŏ	ŏ	
					1 ă	Ň					
									0		
		0			0	0	0	 0	0	0	
0		0	0		0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	 0	0	0	
0		0	0	0	0	0	0	0	0	0	
0		0	0	0	0	0	0	0	0	0	
0		0	0	0	0	0	0	0	0	0	

CSBA loading in the ATOM fuel pellets

¹ATOM: <u>A</u>utonomous <u>T</u>ransportable <u>O</u>n-demand Reactor <u>M</u>odule

Ref.: Xuan Ha Nguyen, Ahmed A. E. Abdelhameed and Yonghee Kim, Optimization of Centrally Shielded Burnable Absorbers in Soluble-Boron-Free SMR Design,	,
Fransactions of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, October 25-27, 2017.	Slide # 4 of 17

Parameters	Target Value	Unit
Thermal power	450	MWt
Active core height	200	cm
Equivalent diameter	201.6	cm
Height-to-diameter ratio	0.993	
Power density	25.99	W/gU
Cycle length	> 48	month
Fuel loading	Single-batch	
FA type	17 x 17	
Number of FAs	69	
Fuel materials	UO ₂	
Fuel enrichment (max)	4.95	w/o
Reactivity swing***	< 1,000	pcm
Boron concentration	0	ppm

*** ((max k_{eff} - 1)/max k_{eff}) x 10⁵ [pcm]

Objective

Objective:

- To find a effective temperature of the fuel for neutronics calculation.
- To find detail temperature profile of a fuel pellet.

Slide # 5 of 17

CSBA Pellet Design

Fuel pellet design parameters

Parameters	Value
Power density (W/gU)	25.99
UO2 density (g/cm3)	10.4668
UO ₂ pellet height (cm)	1.00
UO ₂ pellet radius (cm)	0.40958
Clad inner radius (cm)	0.41873
Clad outer radius (cm)	0.47600
CSBA ball radius (cm)	0.1
Number of CSBA ball	2

side view

Top view

Methodology

- 1. Active fuel pellet divided by 5 (five) equal volumes.
- 2. Power distribution of the fuel pellet was updated from Monte Carlo Serpent Code.
- 3. Temperature distribution was updated by solving the steady state heat conduction equation.
 - Steady state heat conduction equation solved by using Finite Element Method (FEM).

The volume average temperature \overline{T} is

$$\overline{T} = \frac{\int T(r).dV}{\int dV}$$

Top view

Slide # 7 of 17

Side view

Heat Conduction Equation

Steady state heat equation

$$\frac{1}{r}\frac{\partial}{\partial r}\left(k_r \cdot r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \varphi}\left(k_{\varphi} \cdot r\frac{\partial T}{\partial \varphi}\right) + \frac{\partial}{\partial z}\left(k_z \cdot \frac{\partial T}{\partial z}\right) + \dot{g} = 0$$

Due to axisymmetric

$$\frac{1}{r}\frac{\partial}{\partial r}\left(k_r \cdot r\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(k_z \cdot \frac{\partial T}{\partial z}\right) + \dot{g} = 0$$

Heat conduction equation solved using the **Galerkin method** for Triangular Element.

Heat equation as integral form:
$$\int_{\Omega} N_i \left[\frac{k_r}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + k_z \frac{\partial^2 T}{\partial z^2} + G \right] = 0$$

Triangular Element

Solution of above equation as matrix form $[K]{T} = {f}$

$$\{T\} = \text{Temperature matrix}$$
$$[K] = \int_{\Omega} [B]^{T} [D] [B] d\Omega + \int_{\Gamma} h[N]^{T} [N] d\Gamma$$
$$\{f\}_{e} = \int_{\Omega} G[N]^{T} r_{e} d\Omega - \int_{\Gamma_{q}} q[N]^{T} r_{e} d\Gamma + \int_{\Gamma_{h}} hT_{a} [N]^{T} r_{e} d\Gamma$$

Thermal Conductivity

Burnup-dependent thermal conductivity of UO₂

Thermal conductivity of Clad and Gadolinia

Slide # 9 of 17

Heat Transfer Coefficients

Heat transfer coefficient clad to coolant: 0.9 W/cm²·K

Heat transfer coefficient between gap:

Burnup-dependent heat transfer coefficient between fuel gap

Error Analysis (Temperature)

Reference Solution: COMSOL Multiphysics

Mesh Information: Reference

Parameters	Values
Number of mesh points	5809
Number of mesh Elements	11333
Maximum element size (cm)	0.01
Minimum element size (cm)	2E-5

Mesh Information: Solved FEM

Parameters	Values
Number of mesh points	1252
Number of mesh Elements	2387
Maximum element size (cm)	0.03
Minimum element size (cm)	2E-4

Power density: 400 W/cm^3, h_gap: 0.52 W/cm^2·K and Clad conductivity 0.17 W/cm·K

- Case 1: Thermal conductivity UO₂ 0.02 W/cm·K, Gadolinia (Gd₂O₃) 0.020 W/cm·K
- Case 2: Thermal conductivity UO₂ 0.06 W/cm·K, Gadolinia (Gd₂O₃) 0.025 W/cm·K
- Case 3: Thermal conductivity UO₂ 0.02 W/cm·K, Gadolinia (Gd₂O₃) 0.035 W/cm·K

Case 1	l	Case 2	1	Case 3		
Max. relative Error (single point) %	RMS error	Max. relative Error (single point) %	RMS error	Max. relative Error (single point) %	RMS error	
0.165	0.7325	0.0844	0.2573	0.164	0.7367	

Cause of Error: Solved FEM calculate CSBA volume 1.3 % less from actual volume.

Methodology: Algorithm

1. Detail temperature distribution:

- 2. Effective temperature:
 - Preserve the multiplication factor.
 - Calculate effective temperature within 6.5 pcm uncertainty.

- 3. Volume-average temperature:
 - Calculate volume average temperature $\bar{T} = \frac{\int T(r) \, dV}{\int dV}$
 - Calculate multiplication factor using Monte Carlo Serpent Code.

Slide # 12 of 17

Temperature profile of 2 ball CSBA pellet:

Ring-wise power distribution:

Numerical Results

Volume-average temperatures:

Burnup (GWd/MTU)	0.0	5.0	10.0	15.0	20.0	25.0	30.0
Ring 1	943.32	949.95	958.56	966.35	974.65	979.75	984.45
Ring 2	898.38	901.78	906.98	911.35	916.32	918.88	921.61
Ring 3	850.81	850.97	852.83	853.92	855.72	855.70	856.27
Ring 4	803.64	800.76	799.52	797.61	796.51	793.98	792.33
Ring 5	757.47	751.72	747.56	742.83	738.98	733.91	729.89
UO2 Average	849.25	849.46	851.41	852.63	854.55	854.48	854.88

Slide # 15 of 17

Burnup-dependent multiplication factors at different temperatures

Burnup (MWd/kgU)	k _{inf} (reference)	k_{inf} (T _{eff})	Effective T (K)	Difference* (pcm)	k_{inf} (T _{avg})	Average T (K)	Difference ** (pcm)
0	1.150166	1.150173	839.50	-0.53	1.149783	849.25	28.96
10	1.016021	1.016023	839.70	-0.09	1.015740	851.41	27.23
20	0.964887	0.964875	845.75	1.30	0.964546	854.55	36.64
30	0.832647	0.832630	839.71	2.44	0.832231	854.88	60.03

* Difference between k_{inf} (T_{eff}) and k_{inf} (reference), ** Difference between k_{inf} (T_{avg}) and k_{inf} (reference)

Conclusion

- The coupled calculation with Serpent and FEM based T/H calculation is successfully performed with burnup-dependent power and temperature distribution of newly proposed CSBA fuel design.
- Steady state heat conduction solved by FEM (Galerkin method).
- Iteration calculation executed between Monte Carlo Serpent Code and FEM based T/H solution.
- Effective Temperature is calculated to preserve the reaction rate of the reactor.
- The Effective Temperature is lower than volume-average temperature, due to higher importance of periphery region

Thank You

Question ?

Burnun	CSBA	Design	Standard PWR [Power Density: 25.99 W/gU]					
(MWd/kgU)	Average T (K)	Effective T (K)	Average T (K)	Centerline	Surface (UO2)	Effective T ¹ (K)	Effective T ² (K)	
0	849.25	839.50	855.85	976.79	737.12	832.99	854.15	
10	851.41	839.70	858.30	996.32	724.23	833.07	856.67	
20	854.55	845.75	861.74	1016.79	712.68	834.32	860.24	
30	854.88	839.71	862.26	1029.42	700.74	832.21	859.83	

1. Alexander Kudrov1 et al. Effective fuel temperature of WWER-1000, MATEC Web of Conferences 110, 01046 (2017)

$$T_{eff} = T(r_0) + 0.4[T(0) - T(r_0)]$$

2. Goltsev A.O. et al. Computational problems in the calculation of temperature effect for heterogeneous Nuclear reactor unit cells, Annals of nuclear energy 27 (2000) 175-183 $T = -\frac{1}{2} [T(r_{1}) + T(0) + \sqrt{T(r_{2}) T(0)}]$

$$T_{eff} = \frac{1}{3} \left[T(r_0) + T(0) + \sqrt{T(r_0) \cdot T(0)} \right]$$

Extra Slide # 1 of 2

Burnun	CSBA	Design	Standard PWR [Power Density: 38 W/gU]					
(MWd/kgU)	Average T (K)	Effective T (K)	Average T (K)	Centerline	Surface (UO2)	Effective T ¹ (K)	Effective T ² (K)	
0	849.25	839.50	986.16	1200.92	805.57	963.71	996.69	
10	851.41	839.70	989.17	1228.59	787.01	963.64	999.64	
20	854.55	845.75	993.38	1257.36	770.31	965.13	1003.94	
30	854.88	839.71	993.24	1273.90	753.66	961.76	1002.47	

1. Alexander Kudrov1 et al. Effective fuel temperature of WWER-1000, MATEC Web of Conferences 110, 01046 (2017)

$$T_{eff} = T(r_0) + 0.4[T(0) - T(r_0)]$$

2. Goltsev A.O. et al. Computational problems in the calculation of temperature effect for heterogeneous Nuclear reactor unit cells, Annals of nuclear energy 27 (2000) 175-183

$$T_{eff} = \frac{1}{3} \left[T(r_0) + T(0) + \sqrt{T(r_0) \cdot T(0)} \right]$$

Extra Slide # 2 of 2