Compressive Strength of Cement Solidification of Metal Hydroxide Waste

Daeseo Koo*, Hyun-Hee Sung, Sang Bum Hong, Bum Kyoung Seo Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 34057, Korea *Corresponding author: ndskoo@kaeri.re.kr

1. Introduction

Numerous uranium soil waste from a uranium conversion facility has been stored in KAERI since 2010. Various studies on decontamination for uranium soil waste have been carried out [1-3]. All radioactive waste is not received at permanent disposal site of KORAD (Korea Radioactive Agency). Radioactive material (concentrated liquid waste, waste resin, waste sludge) generated from the decontamination process has to solidify and pass the integrity test of KORAD for permanent disposal. For permanent disposal, several studies on cement solidification of the radioactive waste have been conducted [4-7].

In this study, to study the characteristics of cement solidification on metal hydroxide waste for permanent disposal, the experiment of solidified cement was conducted. The compressive strength of cement solidification, which was immersed in demineralized water for 90 days was measured and analyzed on the ratio waste to cement and water amount.

2. Experiment and Measurement

2.1 Sample Preparation

Table I shows test conditions of cement solidification. According to Table I, water, Portland 1 species, and waste were homogeneously mixed using a Morter Mixer (HJ-1150). The mixing material is put into a polyethylene mold (ID 50mm, H 120mm) and solidified for 4 weeks. After solidifying the mixing material for 4 weeks, cement solidification was finished. Fig. 1 shows cement solidification process.

Table I: Test Conditions									
Specimen	ecimen Waste(g) C		Water(g)						
C-2.0-60	2.0(106.95)	1(53.481)	1.80(96.253)						
C-2.0-70	2.0(97.560)	1(48.786)	2.10(102.44)						
C-2.0-80	2.0(89.687)	1(44.849)	2.40(107.62)						
C-1.8-60	1.8(103.56)	1(57.541)	1.68(96.657)						
C-1.8-70	1.8(94.435)	1(52.471)	1.96(102.83)						
C-1.8-80	1.8(86.788)	1(48.221)	2.24(108.00)						
C-1.6-45	1.6(116.60)	1(72.890)	1.17(85.270)						
C-1.6-50	1.6(110.30)	1(68.970)	1.30(89.640)						
C-1.6-60	1.6(99.620)	1(62.270)	1.56(97.130)						



Fig. 1. Cement solidification process.

2.2 Measurement

Fig. 2 shows fracture of cement solidification. The purpose of the compressive strength test for cement solidification is to evaluate durability of cement solidification at a permanent disposal site. The criterion of compressive strength is more than 34 kg f/cm². The compressive strength of the solidified cement immersed in demineralized water for 90 days was measured and analyzed.

Fig. 2. Compressive strength process.

3. Result and Discussion

Table II shows the criteria of integrity test for solidified waste. Fig. 3 shows compressive strength of the solidified cement due to water amount and waste amount. It was determined that the compressive strength of all the solidified cement pass the criterion of integrity test of KORAD. As waste amount increases, compressive strength shows a decreasing trend. In case of the ratio of waste amount to cement amount is same, as water amount increases, compressive strength indicates a decreasing trend.

Test	Test content	Standard	Test method	Criteria	
Struc- tual stabil- ity	Compre s-sive strength	Hard mat.: KS F2405 Soft mat.: KS F2351	-	Hard mat.≥ 3.44MPa Soft mat.≥ 0.41MPa	
	Immer- sion test	NRC*	After immersion of 90 days	Pass of compres- sive strength	
	Thermal cycle test	ASTM B553	After thermal cycle test	Pass of compressiv e strength	
	Irradia- tion test	NRC*	Ion exchange: 1.0E+6Gy Exception of ion exchange: 1.0E+7Gy	Pass of compres- sive strength	
Leach- ability	Leach- ing test	ANS 16.1	Cs, Sr, Co Nuclide	Leachabili- ty index≥ 6	
Free water	Object	ANS 55.1	-	Free water< 0.5 %	
	Spec- imen/ solid	EPA**	-	Free water< 0.5 %	

Table II:	Criteria	of Int	egrity	Test fo	or So	lidified	Waste

* NRC 「Technical Position on Waste Form, Rev.1」 ** EPA Method 9095B (Paint Filter Liquid Test)

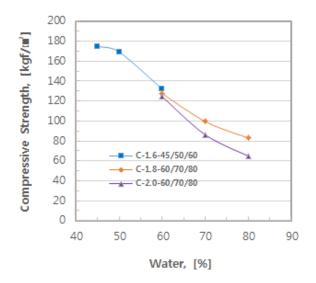


Fig. 3. Compressive strength of cement solidification.

4. Conclusion

To study the characteristics of cement solidification on metal hydroxide waste for permanent disposal, the compressive strength of solidified cement immersed in demineralized water for 90 days was measured and analyzed. It was determined that the compressive strength of all the solidified cement pass the criterion of integrity test of KORAD. As waste amount increases, compressive strength shows a decreasing trend. In case of the ratio of waste amount to cement amount is same, as water amount increases, compressive strength indicates a decreasing trend.

REFERENCES

 G.N. Kim, S.S. Kim, H.M. Park, W.S. Kim, J.K. Moon, J.H. Hyeon, Development of Complex Electrokinetic Safety Assessment Technology of Residual Radiation of Soil and Uranium Decontamination Method for Soil Contaminated with Uranium, Electrochimica Acta, Vol. 86, pp. 49-56, 2012.
G. Kim, H. Won, W. Oh and C. Jung, A Study on Aging Effect in Removal of Radionuclides from Soil by Electrokinetic Method, J. Korea Society of Waste Management, Vol. 21, No.3, pp. 243-252, 2004.

[3] G.N. Kim, J.K. Moon, W.K. Choi, B.I. Yang, J.S. Shon, D.S. Hong, Development of a Pilot Size of Electrochemical Flushing Equipment for Radioactive Soil and Concrete, KAERI/RR-3052/2009, pp. 1-7, 2010.

[4] K.H. Kim, J.W. Lee, Y.G. Ryue, Evaluation on the Long-Term Durability and Leachability of Cemented Waste Form, KAERI/TR-1118/98, 1998.

[5] J. H Kim, B. G. Ahn, H. Y Kim, H. H Park, A Study on the Solidification of Borate Wastes using Cement, J. of Waste Management 6(2), pp. 161-166, 1989.

[6] G.H. Jeong, K.J. Jung, S.T. Baik, U.S. Chung, K.W. Lee, S.K Park, D.G. Lee, H.R. Kim, Solidification of Slurry Waste with Ordinary Portland Cement, Report. KAERI/RR-2194/(2001), 2001.

[7] S.W. Shin, K.D. Kang, H.S.Kim, J.K Son. Y.J. Choi, Studies on Test and Assessment of Immobilization and Clearance Methodology for Soil and Uranium Wastes, Report. KAERI/CM-758/(2003), 2003.