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1. Introduction 
 
Subcooled boiling is characterized by boiling 

occurring adjacent to the heated surface while the bulk 
liquid is at a subcooled condition. Subcooled boiling 
phenomena occur in hot channel under a steady state as 
well as a transient or accident in nuclear reactors. The 
void behavior in subcooled boiling has a great effect on 
flow and heat transfer characteristics and, thus, it is 
important to predict well the subcooled boiling 
phenomena in nuclear reactors. 

During the last several decades, many experiments [1] 
were conducted to observe the subcooled boiling 
phenomena, such as a bubble generation, a bubble 
departure, and a bubble condensation. Some models [2] 
were developed for application in thermal-hydraulic 
computer codes, e.g., RELAP5, TRAC, CATHARE and 
MARS. Some of these efforts have been particularly 
focused on the subcooled boiling at low pressure over 
the past 20 years to analyze the safety of research 
reactors operating near atmospheric pressure [3] and to 
investigate the long-term core cooling during a LOCA 
of advanced light water reactors. However, the 
prediction of void behavior in subcooled boiling flow at 
low pressure still has great uncertainty, caused by the 
sensitivity of void behavior to various parameters. 

In this work, the subcooled boiling model of the 
MARS code has been assessed, mainly focused on   
low-pressure conditions, through which some problems 
are identified. To solve these problems, some 
modifications are suggested and the results are 
discussed. 

 
2. Subcooled boiling model of MARS code 

 
2.1 The original model 

 
In MARS, the subcooled boiling model involves a 

net vapor generation point (NVGP) model and a wall 
evaporation model. In a flow channel with a heated 
surface, bubbles can be generated at the surface 
although the cross-section averaged liquid is subcooled. 
Initially the bubbles may coalesce and condense by the 
subcooled liquid, thus maintaining negligible void 
fraction along the channel. The NVGP is generally 
defined as the point in the axial direction (i.e., in the 
direction of the flow) where the void fraction increases 
significantly. MARS adopts the Savannah River 
Laboratory (SRL) model to calculate the NVGP given 
by: 
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where crh  is corresponding to the enthalpy at the 

NVGP and pressF is a pressure dependent multiplier: 
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where 
310894.6 psiaP for units conversion. 

 
Once the NVGP is determined by Eq. (1), the wall 

evaporation rate is calculated from the point to 
downstream along the heated wall. In MARS, the SRL 
model is also adopted for the wall evaporation. The wall 
evaporation is represented as: 
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The multiplier, epsF , is applied to the pumping factor to 

correct the effect of the density ratio at the low pressure 
condition. 
 
2.2 Deficiencies of original subcooled boiling model 
 

The deficiencies of the original subcooled boiling 
model at low pressure were found through the 
comparison of subcooled boiling experimental data [1] 
with calculated results:  
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- The void fraction is significantly affected by an inlet 

subcooling temperature, when the inlet subcooling is 
low, as presented in Fig. 1. However, the original 
MARS does not consider the effect of the inlet 
subcooling temperature as presented in Fig. 2.  

- MARS does not take into account the effect of liquid 
velocity. The effect of the liquid velocity is clearly 
shown on the experimental data under similar heat 
flux condition represented in Fig. 3, but the MARS 
code cannot consider this effect as shown in Fig. 4. 

- The effect of equivalent diameter on NVGP is 
considered incorrectly. In MARS, the calculated void 
fraction is under-predicted when the equivalent 
diameter is small ( hD < 10 mm), as shown in Fig. 5(a).  

Adversely, the calculated void fraction is over-
predicted in case of hD > 10 mm, as presented in Fig. 

5(b). 
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Fig.1. The effect of inlet subcooling temperature on 
void fraction in experimental data. 
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Fig. 2. The calculation results of the experiment. 
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Fig. 3. The effect of liquid velocity on void fraction in 
experimental data. 
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Fig. 4. The calculation results of the experiment. 
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 Fig. 5. The comparison of experimental data and 
calculated result.  
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3. Improvement and Assessment of the 

subcooled boiling model 
 

To improve the problems mentioned in Section 2.2, 
an improved model is proposed in this section. 

 
3.1 Improvement of the subcooled boiling model 
 

From the collected experimental data, we observed 
that the void fraction versus the thermal-equilibrium 
quality, Xeq, changes quite different at around a certain 
liquid velocity (~ 0.3 m/s), as shown Fig. 3. Ivey [4] 
showed that most bubble rise velocities in boiling at 
low pressure have velocities within 0.3 m/s. We deduce 
that the void profile in low-pressure subcooled boiling 
is associated whether liquid velocity is greater than the 
bubble rise velocity or not. Therefore, a dimensionless 
number, u*, associated with the bubble rise velocity 
was introduced:  
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Then, the NVGP and wall evaporation model were 

respectively improved by dividing into a low velocity 
group and a high velocity group. The criterion between 
low velocity and high velocity is set to 75.1u*   
(around 0.3 m/s) from the analysis of the experimental 
data. 

At low velocity  75.1*u , the NVGP was newly 
fitted based on the experimental data using a laminar 
heat transfer formulation in duct [5], to consider the 
effect of inlet subcooling temperature, as shown in Fig. 
6.  
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The SRL wall evaporation model was also modified 
using *u  because most of the calculated void profiles 
were over-predicted compared to the experiment. 
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Fig. 6. Improvement of NVGP model at low velocity. 
 
At high velocity  75.375.1  *u , the NVGP of 

experimental data was also fitted using the boiling 

number )(
fgGh

q
Bo


  to eliminate the effect of equivalent 

diameter, as shown in Fig. 7.  
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where the data used in the correlation are within 
75.3u*  m/s. The SRL wall evaporation model was 

also modified because the calculated void profiles are 
mainly under-predicted unlike in the case of low 
velocity. 
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Fig. 7. Improvement of NVGP model at high velocity. 
 

3.2 Calculation results 
 

Figs. 8(a) and (b) show the comparisons of 
experiment data and the calculated results using the 
original and modified models at low velocity  75.1*u . 
Fig. 8(a) shows an experiment where the inlet 
subcooling temperature is low and, the modified model 
predicts well the experimental data than the original 
model. Fig. 8(b) also shows the modified model 
predicts better.  
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Figs. 9(a) and (b) compare the experiment data and 

calculation results at high velocity  75.375.1  *u . As 
mentioned earlier, the original model under-predicts the 
void fraction when the equivalent diameter is small 
( hD < 10 mm). Because the effect of equivalent 

diameter is eliminated by using the boiling number in 
the modified model, the modified model better predicts 
the experiment data than the original model. In addition, 
as shown in Fig. 9(b), the modified model shows a good 
agreement with experimental data due to the 
modification of the wall evaporation model. 

 

 
 (a) The effect of inlet subcooling 

 

 
 (b) The effect of the wall evaporation model 

Fig. 8.  Calculation results at low velocity.  
 

  
(a) The effect of equivalent diameter 

  
(b) The effect of the wall evaporation model 

Fig. 9.  Calculation results at high velocity.  
 

4. Conclusions 
 
In this work, we have assessed the subcooled boiling 

model of the MARS code, mainly focused on low-
pressure conditions. From the results of the assessment, 
the following deficiencies of the MARS subcooled 
boiling model were found. 
- It cannot consider the effects of inlet subcooling 

temperature and liquid velocity on axial development 
of void profile. 

- It considers the effect of equivalent diameter 
incorrectly. 

 
To solve these problems, we have modified the net 

vapor generation point model and the wall evaporation 
model of the MARS code. The results of the modified 
model clearly showed better agreement with experiment 
data than the original MARS model for low-pressure 
conditions. 
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