Determination of ⁹⁰Sr and ⁹⁹Tc from concrete and soil

Hyuncheol Kim^a, Jong Myoung Lim^a, Yoonhee Jung^b, Kun Ho Chung^a

 ^a Nuclear Emergency and Environmental Protection Division, Korea Atomic Energy Research Institute, Korea, 111 Daedeok-daero 989 beon-gil, Yuseong,gu, Daejeon, 34057, Korea
^b Radiation and Environmental Laboratory, Korea Hydro & Nuclear Power Central Research Institute 70 Yuseong-daero 1312 beon-gil, Yuseong-gu, Daejeon, 34101, Korea Corresponding author's e-mail: <u>hckim3@kaeri.re.kr</u>

1. Introduction

The fate of radioactive waste produced from nuclear facilities depends on its radioactive concentration level. Now in Korea, the low/intermediate level of radioactive waste should be transferred to the radioactive waste repository placed in Gyung-Ju. According to the Nuclear Safety Act, the part operating the nuclear facility have to characterize its radioactive waste, for example ³H, ¹⁴C, ⁵⁵Fe, ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, gamma isotopes and gross alpha. The fast and reliable analytical technique is a big issue in the characterization of radioactive waste, because the waste handling cost depends on its analytical results. The sequential determination of several radionuclides from one sample could be the economic alternative in processing wastes. Except the volatile radionuclides, such as ³H and ¹⁴C and gamma emitters, alpha and beta emitters should be chemically separated from the sample. This study presented the sequential separation of 90Sr and 99Tc from soil and concrete sample based on extraction chromatography.

2. Methods and Results

We digested the concrete and soil samples with nitric acid to extract ⁹⁰Sr and ⁹⁹Tc, and chemically separated them from the sample using TEVA resin for ⁹⁹Tc and Sr resin for ⁹⁰Sr, respectively. ICP-MS and LSC were used to determine the level of ⁹⁹Tc and ⁹⁰Sr. The recovery of each target nuclides was estimated by ^{99m}TC using HPGe and stable Sr using ICP-OES. The method standard sample was used to test of the performance of the suggested method.

2.1 Pretreatment

In considering the minimum detectable activity to meet NSCC notice (2014-3), 0.3 g of concrete and soil samples were transferred into Teflon beaker. About 40 kBq of ^{99m}Tc and 0.5 mg of Sr carrier (10 mg of Sr mL-1) were added with the sample. To evaluate the performance of this method, the method standard samples were prepared with a mixture of 3-5 Bq of ⁹⁰Sr and ⁹⁹Tc, respectively. Ten mL of 14 M nitric acid and 0.5 mL of 1 M NaNO2 was mixed with the sample, and

it was refluxed at 150oC for 2 hr. Tc existed as Tc^{7+} under oxidant phase. Then it was filtered through GF/F (Whatman), and 1 mL of Fe carrier (10 mg mL⁻¹) was added. Its pH was increased to 7 using NH3 solution. It was centrifuged, and then ⁹⁹Tc in the supernatant was loaded on TEVA resin. The precipitate having ⁹⁰Sr was dissolved in 8 M HNO₃, and then loaded on Sr resin.

2.2 chemical separation

TEVA resin (2 ml, BV) was conditioned with 10 mL of 0.5 M HNO₃. 10 mL of 0.1 M HCl and 10 mL of 2 M HNO₃ were used to remove interferences from TEVA resin, and 8 mL of 8 M HNO₃ was used to elute ⁹⁹Tc. Then the recovery of ⁹⁹Tc was estimated by determining ^{99m}Tc by HPGe.

The precipitate having 90Sr was dissolved in 10 mL of 8 M HNO₃, and loaded on Sr resin conditioned with 10 mL of 8 M HNO₃. Additional 10 mL of 8 M HNO₃ was used to remove interferences, and then 10 mL of de-ionized water was used to elute ⁹⁰Sr from Sr resin. ⁹⁰Sr of the sample eluted from Sr resin was precipitated as SrCO₃, then dissolved with 10 mL of 0.1 M HNO₃.

The recovery of Sr was determined by ICP-OES to estimate the recovery of Sr.

2.3 Determination of ⁹⁰Sr and ⁹⁹Tc

The sample eluted from TEVA resin was diluted to desirable concentration for determining ⁹⁹Tc by ICP-MS. ⁹⁰Sr of the sample was measured with Cerenkov mode by LSC.

Table 1 Analytical Results of method standard for ⁹⁰Sr

Sample	known A ¹	Recovery	meas. A ²	R.E. ³
	(Bq)	(%)	(Bq)	(%)
STD-1	3.10	78.3	3.07	-1.0
STD-2	5.37	46.7	5.62	4.7
STD-3	5.32	61.5	5.16	-3.0
STD-4	3.21	87.6	3.12	-2.8
STD-5	3.23	82.9	3.19	-1.2
STD-6	3.18	79.1	3.21	0.9
STD-7	3.18	84.8	2.98	-6.3
STD-8	3.16	84.4	2.93	-7.3
1 1		2	1	

¹: known activity, ²: measured activity, ³: relative error

Table 2 Analytical Results of method standard for ⁹⁹Tc

Sample	known A	Recovery	means.	R.E. (%)
	(Bq)	(%)	A (Bq)	
STD-1	4.01	80.5	4.09	2.0
STD-2	4.05	91.5	4.28	5.7
STD-3	3.86	94.0	3.63	-6.0
STD-4	4.00	92.6	3.64	-8.9
STD-5	2.87	93.7	2.82	-1.9
STD-6	2.90	92.6	2.66	-8.4

STD-7	2.95	92.2	2.87	-2.7
STD-8	2.93	93.6	2.71	-7.3

For 90 Sr, the recovery of it was ranged from 60 to 88 %, except STD-2 with 46 %, which lost part of SrCO₃ at precipitation process. For 99 Tc, the recovery of it was over 90 %, except STD-1 with 80 %.

In regards to the performance test of the analytical method, the measured value agrees with known activity, well. These method employed for determining ⁹⁰Sr and ⁹⁹Tc in real soil and concrete samples (n=31) produced in decommissioning of the research reactor. The results show that the level of ⁹⁰Sr and ⁹⁹Tc was less than the minimum detectable activity.

3. Conclusions

We collected soil and concrete samples produced from decommissioning of research reactor in Seoul. We analyzed the level of ⁹⁰Sr and ⁹⁹Tc in soil and concrete samples. The acid digestion was employed for the pretreatment and TEVA resin/Sr resin was used for chemical separation. The recovery of each radionuclide was estimated by determining stable Sr by ICP-OES and ^{99m}Tc by HPGe. ⁹⁹Tc and ⁹⁰Sr were determined by ICP-MS and LSC, respectively. Based on the performance test using the method standard sample, this method shows the reliable result, having from -8 to 2 % of relative error. The level of ⁹⁰Tc and ⁹⁰Sr in real soil and concrete samples were less than MDA.

REFERENCES

[1] K. H. Chung, S. D. Choi, G. S. Choi, and M. J. Kang, Design and performance of an automated radionuclide separator: Its application on the determination of 99Tc in groundwater, Applied Radiation and Isotopes, Vol.81, p. 57, 2013.

[2] H. Kim et al, A rapid and efficient automated method for the sequential separation of plutonium and radiostrontium in seawater, Journal of Radioanalytical Nuclear Chemistry, Vol 304, p. 321, 2015.