Study on fabrication of a prototype betavoltaic battery using Ni-63

Jin Joo Kim^{a*}, Sang Mu Choi^a, Byoung Gun Choi^b, Kwang Jae Son^a, Jintae Hong^a ^aDepartment of HANARO Utilization and Research, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, Korea ^bIntelligent SoC Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, Korea ^{*}Corresponding author: jinjookim@kaeri.re.kr

1. Introduction

A betavoltaic battery that converts the decay energy of beta-emitting radioisotopes into electricity is characterized by specialized properties such as a long service lifetime, high energy density, easy small-scale fabrication, and minimum maintenance requirements. It is widely used in low-power applications such as medical devices, micro robots, sensors for monitoring, and power sources for MEMS (microelectromechanical system) because it can operate effectively under extreme environmental conditions. Radioisotope Ni-63, a pure beta emitter, has a low energy spectrum of 17.4 KeV and significantly long half-life of 100.1 years. For this reason, Ni-63 is suitable for the energy source of a betavoltaic battery.

In this study, a prototype betavoltaic battery was fabricated using a Ni-63 sealed source and SiC semiconductors. Ni-63 was electroplated onto Ni foil for manufacturing a Ni-63 sealed source using a small-scale electroplating device, and the radioactivity of the fabricated single Ni-63 foil is about 25 mCi/cm². It was bonded to a SiC semiconductor, and a short circuit current (I_{sc}) and open circuit voltage (V_{oc}) were then investigated. The unit cells were arrayed 4×4 in two PCB. The power output of a betavoltaic battery unit cell was measured at about 6 nW. A whole prototype betavoltaic battery's power output was measured at 145 nW.

2. Methods and Results

2.1 Ni-63 Electroplating

The Ni-63 was obtained from POLATOM in Poland, and its specific activity was 12 Ci/g. The Ni-63 electroplating was conducted at current density of 15 mA/cm² using manufactured small-scale electroplating device. The basic composition of the bath was 0.05 M Ni-63 (in 0.5M HCl) and 0.4 M boric acid. The pH of the bath was adjusted to 4.0. The composition and condition of Ni-63 electroplating are shown in Table 1. A nickel foil with dimensions of $17 \times 17 \times 0.125$ mm³ was used as a cathode and a Pt-coated Ti mesh with dimensions of $10 \times 10 \times 1$ mm³ was used as an anode. A Ni foil with a high purity of 99.99 % was used as the substrate.

Table I: C	omposition and	l condition of	f Ni	electron	lating
	· · · · · · · · · · · · · · · · · · ·				

Bath composition				
63NiCl2 in HCl	0.05M			
H ₃ BO ₃	0.4 M			
NaCl	0.7 M			
Saccharin	0.00829 M			
Tween 20	0.5 %			
Bath condition				
Temperature	40 °C			
Deposition time	1758 sec			
Substrate dimension	$1 \times 1 \text{ cm}^2$			
Current density	15 mA/cm ²			
Cathode	Ni foil			
Anode	Pt-coated Ti mesh			
pH	4.0			

Figure 1 presents images for electrodeposited Ni-63 on the Ni foil at current densities of 15 mA/cm². The thickness of the Ni-coated Ni foil was estimated 2.5 ~ 3.0 μ m, and the size of single foil is 4 × 4 mm². The radioactivity of the fabricated single Ni-63 foil is about 25 mCi/cm².

Fig. 1. Images for electrodeposited Ni-63 on the Ni foil at current densities of 15 mA/cm².

2.2 Fabrication of prototype betavoltaic battery

The unit cells were arranged in 4×4 on two PCB, and the total arranged Ni-63 foil was 32 pieces. A short circuit current and an open circuit voltage of all the unit cells were measured so that power outputs of two PCB are similar. The demonstration of the Ni-63 mounted SiC shows a short circuit current of 3.7 nA and an open circuit voltage of 2 V resulting a conversion efficiency of 7.9% and power output of 7.4 nW.

Figure 2 presents images for the prototype betavoltaic battery using Ni-63 and SiC semiconductors. The result shows a short circuit current of 49 nA, an open circuit voltage of 3 V, and the power output of prototype battery using 32 pieces of Ni-63 foil was 145 nW. In further study, power output improvement with arraying and the stacking of bigger unit cells will be conducted.

Fig. 2. Prototype of betavoltaic battery using Ni-63 and SiC semiconductors.

Fig. 3. LED test using prototype betavoltaic battery.

3. Conclusions

The prototype betavoltaic battery was fabricated using a Ni-63 sealed source and SiC semiconductors. The radioactivity of the fabricated single Ni-63 foil is about 25 mCi/cm². The unit cells were arrayed 4×4 in two PCB. The power output of unit cell was measured at about 6 nW. A whole prototype betavoltaic battery's power output was measured at 145 nW.

REFERENCES

[1] M. Petek, J.S. Wike, B.P. Phillips, C.A. Sampson, Plating Nickel-63 on copper coupons, Tech. Rep. ORNL/TM-10989, 1989.

[2] M.A. Prelas, C.L. Weaver, M.L. Watermann, E. Lukosi, R.J. Schott, D.A. Wisniewski, A review of nuclear batteries, Progress in Nuclear Energy, Vol. 75, p. 117, 2014.

[3] Z. Guoping, Z. Jianliang, K. Guotu, A simple theoretical model for ⁶³Ni betavoltaic battery, Applied Radiation and Isotopes, Vol. 82, p. 119, 2013.