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1. Introduction 

 

In the Monte Carlo (MC) eigenvalue calculations, the 

higher order eigenvalues and eigenfunctions can be 

useful to evaluate nuclear criticality safety, accelerate 

the fission source convergence and estimate the real 

variance.  

There have been several studies [1–4] to obtain the 

higher order eigenfunctions in the MC power iteration 

method [5]. Booth [2] proposed a modified power 

iteration method that simultaneously determines the 

dominant and subdominant eigenvalues and 

eigenfunctions. Zhang et al. [4] proposed a general 

solution strategy which extends Booth’s modified power 

iteration method, and it is applied to continuous energy 

Monte Carlo simulation. 

Hotelling’s deflation method [6] is a well–known 

technique to calculate the higher order eigenfunctions 

which removes lower order components from the fission 

source distribution by adjoint solution. However there 

are two obstacles in implementing this method in the 

MC neutron transport simulation – adjoint flux 

calculation and pointwise subtraction of lower order 

components. Recently, a method to estimate adjoint flux 

during the MC forward calculations was developed and 

successfully applied to kinetic parameter estimations 

and sensitivity and uncertainty analyses. To overcome 

the pointwise subtraction issue, Booth [1] and 

Yamamoto [3] proposed a point detector procedure and 

mesh based deflation algorithm, respectively.  

  The objective of this paper is to present a MC 

deflation algorithm without the source weight 

cancellation by scoring deflation responses in the 

fundamental mode eigenvalue calculation. 

 

2. Methodology 

 

2.1 Hotelling’s Deflation Method  

 

In Hotelling’s deflation method, the first order 

eigenfunction is calculated by removing the 

fundamental mode component as 
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where 
0S  is the fundamental mode eigenfunction, 

1S   

the first order eigenfunction, 
1k  the first order 

eigenvalue and †

0  the fundamental mode adjoint flux. 

Fission operator H is defined by [7] 

 
1H FT  ,                              (2) 

 

where operator F and T are fission production operator 

and net loss operator, respectively. The bracket in Eq. 

(1) indicates integration over volume and neutron 

energy. Also 
NSH in Eq. (1) can be written as  

 

( ) ( ) , 0,1;N NS H S d N    H r r r r       (3) 

 

where ( )H  r r  means the number of first-generation 

fission neutrons born per unit phase space volume about 

r due to a parent neutron located at r . 

However, pointwise subtraction in Eq. (1) is difficult 

to conduct without some techniques such as point 

detector procedure or discretization of space and energy 

since eigenfunctions are represented by point particles 

in MC power iteration method. 

 

2.2 MC Deflation Method without source weight 

cancellation 

 

In order to estimate the first order eigenfunction in 

the middle of iterative updates of
0S , Eq. (1) is rewritten 

as  
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By applying the power iteration method to Eq. (4), 

the first order fission source is updated cycle–by–cycle 

as 

 

( )

1 ( 1)

1

† ( 1)( 1)
0 1 ( 1)1

0( 1) † ( 1)
0 0 0

1
( ) ( )

,( )
( )

( ) ,

m

m

mm
m

m m

S d H
k

SS
S

S S










 


  



 
  

  
  

r r r r

r
r

r

  (5) 

 

where (m)

1 ( )S r is the first order fission source located at r 

in m–th cycle. 

The fundamental mode adjoint solution †

0 is 

calculated by scoring the fission neutrons after sufficient 

number of generations. In this study, 10 is chosen as the 

waiting generation. For tallying deflation response, a 

variable to store the weight of the first order source is 

introduced where the fundamental mode source is 

located. Then, the first order fission source for m–th 

cycle can be obtained by Eq. (5). 

 

3. Numerical Result 

 

A verification of the method is performed by a one–

dimensional two–group test problem [3], then the 

calculated first order fission source distribution is 

compared with reference solution from fission matrix 

method. Fig. 1 and Table I show the configuration and 

two-group parameters of the problem, respectively. 

 

 
 

Fig. 1. One–dimensional slab for test problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I: Two-group parameters for test problem. 

 

Cross section Material 1 Material 2 
1 1(cm )t

  0.20 0.20 
2 1(cm )t

  0.40 0.40 
1 1(cm )a

  0.07 0.05 
2 1(cm )a

  0.12 0.05 
1 1(cm )f

  0.02 0.00 

1 1(cm )f

  0.07 0.00 

1 1 1(cm )s

   0.06565 0.07575 
1 2 1(cm )s

   0.06435 0.07425 
2 1 1(cm )s

   0.00280 0.00350 
2 2 1(cm )s

   0.27720 0.34650 

  2.50 - 
1  1.00 - 
2  0.00 - 

 

The number of histories per cycle is set to 1 million. 

The geometry of the problem is equally divided into 200 

tally regions. The initial weight of the first order fission 

source is negative (-1) on the left side and positive (+1) 

on the right side. Fig.2 shows the cycle–by–cycle first 

order fission source distributions.  
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Fig. 2. Cycle–by–cycle first order fission source distributions. 
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Fig. 3. The first order fission source distribution compared 

with reference source distribution. 

 

Fig. 3 shows the first order fission source distribution 

of 11–th cycle compared with reference solution. One 

can see that the first order fission source is converged to 

the reference source distribution.  

  

 

4. Conclusions & Future Work 

 

In this study, the MC deflation method without source 

weight cancellation for the first order eigenfunction 

calculation is developed and verified by the one-

dimensional two-group problem, which shows good 

agreement with the reference solution from fission 

matrix method. In the method, source weight 

cancellation which is necessary for the previous studies 

is not needed by tallying deflation response in the 

fundamental mode eigenvalue calculation. 

The preliminary results are encouraging, but more 

research for reliability of this method will be done. 
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