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1. Introduction 

 
Nowadays the accelerator-driven subcritical system 

(ADS) has been widely studied as a candidate of 

transmutation reactor.[1] Applications of the 

conventional point kinetics equation (PKE) [2] using the 

k-adjoint weighted kinetics parameters can be invalid 

for the time-dependent ADS analysis because it assumes 

that the reference system is critical.[3,4] In order to 

increase the accuracy of the point kinetics analysis for 

an ADS, Gandini and Salvatores [3] suggested a PKE 

using an importance function associated with the 

relative power level in a subcritical system and 

Nishihara et al. [4] proposed a PKE using kinetics 

parameters weighted by Green’s function [5]. 

In this paper, we propose a new PKE with kinetics 

parameters weighted by the α-adjoint flux, solution to 

the adjoint α-mode eigenvalue equation, because the α-

mode eigenvalue equation can accurately represent an 

off-critical system. In addition, algorithms to calculate 

the α-adjoint weighted kinetics parameters in the Monte 

Carlo (MC) α iteration method [6] are presented and 

tested in an infinite homogeneous 2-group problem. 

 

2. Methods 

 

2.1 New point kinetic equation 

 

The time-dependent neutron transport equation and 

the delayed neutron precursor density equation can be 

expressed as 
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ci(r,E,,t) is defined as  ( , )
4

i

iC t



r  where Ci(r,t) 

denotes the delayed neutron precursor density of group i. 

Other notations follow standard. 

For the further derivation, the i-th delayed neutron 

production operator, Fi is defined by 
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where ( )i E  is the fission spectrum for the i-th 

precursor group. 

The adjoint form of the α-mode eigenvalue equation 

for a reference state of the subcritical system can be 

expressed as [2] 
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where †

0  denotes the -adjoint flux and the subscript 

“0” indicates the reference state of the subcritical 

system.  

By multiplying Eq. (1) by †

0  and Eq. (7) by  , 

subtracting the resulting equations and integrating it 

over (r,E,), one can obtain 

 

† † † †0

0 0 0 0

† †

0 0

† † † †

0 0 0 0

1
, , , ,

, ,

, , .

p

i i

i

Qc

t


      

  

   


   



 

 



L F

L F

v v

    (10) 

 

Now let us separate the angular flux  into the 

amplitude function P(t) and the shape function 

(r,E,,t) as  
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Then insertions of Eq. (11) into the left hand side 

(LHS) of Eq. (10) give 
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where the following normalization condition is applied 

to the second equality: 
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By inserting † †

0 0, ,i i i i

i i

      F F  in the 

right hand side (RHS) of Eq. (10) and using Eqs. (10) 

and (12), a new †

0  weighted PKE is obtained as 
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Note that the (t) expression of Eq. (15) can be 

obtained by applying the perturbation theory for -

eigenvalue. [2] 

 

2.2 Calculation of the α-adjoint weighted kinetics 

parameters 

 

In the  iteration method [6] for a subcritical system, 

the time source distribution St is updated iteration-by-

iteration as  
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Then †

0  implies the number of time sources 

produced in the n-th iteration due to a unit time source 

neutron located at (r,E,it as n approaches infinity. 

The time source probability after n iterations from a 

source of energy group g at iteration i-n, denoted by 
†,

,

n

g i , can be estimated as 
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where j and k are history and collision indices, 

respectively.  

Then 
†

0 , i i  F , 
†

0 ,



v

, and 
†

0 , F  in Eqs. 

(17) and (18) can be calculated at iteration i by 
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The index g in Eq.(25) and the index g  in Eq.(27) are 

energy groups of delayed fission neutron and fission 

neutron, which is generated from k-collision, 

respectively. The index g  in Eq.(26) indicates the 

energy group which the neutron has before the k-th 

collision.  

 

3. Numerical Results 

 

The proposed method to calculate the -adjoint 

weighted kinetics parameters is verified for an infinite 

homogeneous problem characterized by two-group 

cross sections given in Table 1.  

The MC a iteration calculation is conducted with 

1000 active iterations on 100,000 sources per iteration. 

Table 2 shows the comparison of MC estimates of the α-

adjoint weighted kinetic parameters and -eigenvalue 

with their analytic solutions. From the table, one can see 

that the MC estimates agree well with the references 

within their 95% confidence intervals. 
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Table 1. 2-group cross-section for the infinite 

homogeneous problem 

Cross section 
First group 

(g=1) 

Second group 

(g=2) 

Σ
tg
 0.500 0.500 

Σ
fg

 0.025 0.175 

ν
pg

 2.000 2.000 

Σ
sgg

 0.100 0.200 

Σ
sg'g

(gg') 0.024372 0.000 

χ
1
 0.800 0.500 

χ
2
 0.200 0.500 

χ
d,1

 0.800 0.800 

χ
d,2

 0.200 0.200 

β
0
 0.006 0.006 

1/v
g
[sec/cm] 2.2862610

-10

 1.2932910
-6

 

 

Table 2. α adjoint -weighted kinetics parameters for 

the infinite homogeneous problem 

Parameter Ref mean RSD [%] Error [%] 

α 83448.3 83438.7 0.008 -0.011 

eff  3.16578E-03 3.17000E-03 0.079 0.133 

  6.52997E-06 6.52687E-06 0.038 -0.048 

 

4. Conclusions 

 

A new point kinetic equation using the -adjoint 

weighted kinetics parameters is derived by making the 

best of a fact that the subcritical system can be 

accurately represented by the -mode eigenvalue 

equation, rather than the k-mode eigenvalue equation. 

Algorithms to calculate the required kinetics parameters 

are suggested for the MC  iteration calculations. 

Application results of the proposed PKE for a 

subcritical system will be presented. 
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