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1. Introduction 

 
If an event or accident occur in nuclear power plants, 

plant operators will try to find out abnormal plant states 

by monitoring the temporal trends of several important 

parameters. However, operators are provided with a part 

of information and also, there may be not enough time 

to recognize and diagnose about corresponding situation. 

So, it is very difficult for operators to predict the 

progression of the events by observing the trends of 

some parameters on large display panels in the main 

control room. In addition, during a series of accident 

progression, the operators will face hundreds of 

instrument readings that show some typical patterns of 

that accident [1].  

In case of the accidents that happen in a nuclear 

power plant (NPP), it is very important for the operator 

to identify its accidents in early time because these can 

raise the problems such as unexpected reactor trip, 

design basis accident (DBA), etc. Therefore, in order to 

effectively manage the accidents, trends of major 

parameters shortly after the accidents have to be 

observed and NPP accidents have to accurately be 

identified to provide its information for operators and 

technicians. 

In this regard, the objective of this study is to identify 

the accidents when the accidents happen in a NPP. In 

this study, we applied the deep learning network (DNN) 

model to classify the initiating events of critical 

accidents such as loss of coolant accidents (LOCA), 

total loss of feedwater (TLOFW), station blackout 

(SBO), steam generator tube rupture (SGTR), main 

steam line break (MSLB), and feedwater line break 

(FWLB). Input variables to the DNN are the initial 

integral values of the signal measured in the reactor 

coolant system (RCS), steam generator, and 

containment vessel after reactor trip. The proposed 

DNN model is verified by using the simulation data of 

the modular accident analysis program (MAAP4) code 

[2]. 

 

2. Methods and Results 

 

2.1 Deep Learning 

 

Deep learning is a machine learning technique using 

a deep neural network (DNN). Fig. 1 shows the concept 

of deep learning. Modeling is done using training data, 

and a learning rule is used as an algorithm for model 

building. Through this process, a DNN model is finally 

created.  

 

2.2 Deep Neural Network (DNN) 

 

Fig. 2 shows the DNN model. The DNN model 

consists of input layer, many hidden layers, and output 

layer. Input signals enter the input layer, pass through 

the hidden layers, and exit to the output layer. The 

signals are multiplied by corresponding weights and 

delivered to each hidden layer node. The node of hidden 

layers is obtained by the sum of the weights. Then, the 

node outputs the value which is calculated by inputting 

the sum of the weights to the activation function. The 

output layer receives the signal from the last hidden 

layer, and then outputs the final result. 

 

2.3 Improvement of the DNN 

 

The reason that the neural network with deeper layers 

yielded poorer performance was that the network was 

not properly trained. There are three difficulties in 

training process of the deep neural network with the 

back-propagation algorithm. The three difficulties are 

vanishing gradient, overfitting, and computational load 

[3]. 

 

2.3.1 Vanishing Gradient. 

 

The vanishing gradient in the training process with 

the back-propagation algorithm occurs when the output 

error is more likely to fail to reach the farther nodes. 

The back-propagation algorithm trains the neural 

network by propagating the output error backward to the 

hidden layers. However, since the error hardly reaches 

the front hidden layer, the weight cannot be adjusted. 

Therefore, the hidden layers close to the input layer are 

not well properly trained [3]. Fig. 3 shows the vanishing 

gradient. 

A solution to the vanishing gradient is the use of the 

rectified linear unit (ReLU) function as the activation 

function. The error is better transmitted than the existing 

sigmoid function. Eq. (1) is the definition of the ReLU 

function. 
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It produces zero for negative inputs and conveys the 

input for positive inputs. Fig. 4 shows the ReLU 

function. In the case of the sigmoid function, the output 

of the neural network node is not more than 1 even if 

the input value is large.  
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To implement the back-propagation algorithm, we 

need a derivative of the ReLU function. The derivative 

of the ReLU function is given by Eq. (2) according to 

the definition of the ReLU function [3]. 
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2.3.2 Overfitting. 

 

If the number of hidden layers in the DNN model 

increases, the model becomes more complicated due to 

the increase of weights number. Therefore, the DNN 

model becomes vulnerable to the overfitting problem. 

Solution to the overfitting is a method of dropout, 

which trains only some of the randomly selected nodes 

rather than the entire network. Fig. 5 shows the concept 

of the dropout. Some nodes are randomly selected at a 

constant rate and their outputs are set to be zero to 

deactivate the nodes [3]. The dropout effectively 

prevents overfitting by continuously changing nodes and 

weights in the training process. In addition, the use of 

huge amounts of training data is also very helpful in 

preventing overfitting. This is because the deep neural 

network depends less on a specific data. 

 

2.3.3 Computational Load. 

 

The number of weights increases exponentially with 

the number of hidden layers, thus requiring more 

training data. This ultimately needs more calculations to 

be done. Also, it takes longer to learn. This problem has 

been relieved to a considerable extent by using high-

performance hardware such as GPU. 

 

2.4 Application to NPP event classification 

 

DNN model is used for classifying the data of the 

non-linear form. Input variables of the DNN model are 

composed of the signals measured at RCS, steam 

generator, and containment vessel. After reactor trip, 

major accidents is classified by using very short time 

integral values of the measured signals [1]. 

The data was obtained using MAAP4 code. Input 

variables of DNN model are integral values of 13 

simulated sensor signals. The total simulation number of 

accident scenarios is 620. The acquired data are divided 

into training data and test data. The training data consist 

of 190 hot-leg LOCAs, 190 cold-leg LOCAs, 190 

SGTR, 2 SBO, 2 MSLB, and 2 TLOFW. The test data 

consist of 10 hot-leg LOCAs, 10 cold-leg LOCAs, 10 

SGTR, 1 SBO, 1 MSLB, and 1 TLOFW. 

In this paper, DNN model was used to classify seven 

types of events in NPPs. NPP events are classified by 

the trained DNN model as shown in Fig. 6. As a result, 

perfect classification of events in case of no 

measurement errors is shown in Table I. That is, perfect 

classification was accomplished even though pretty 

short time measurement values were used. 

Since the aforementioned results were generated from 

simulated data, it was assumed that there were no 

measurement errors in the input signals. Now, six types 

of measurement errors are assumed to check the effect 

of the measurement error on the proposed algorithm: 

minus 3% bias error, plus 3% bias error, minus 5% bias 

error, plus 5% bias error, random errors less than 3% 

and random error less than 5%. Table II shows the result 

under the assumption of measurement errors. Despite of 

measurement error, the DNN model classifies NPP 

events accurately more than 99%.  

Table III shows the result of the case when the safety 

system works. Each of the safety systems was operated 

with delay.  

Table IV and V show the comparison between DNN 

model and support vector classification (SVC) model 

[1]. If there is no measurement error, both performances 

are perfect. On the other hand, if there is a measurement 

error, the performance of DNN is slightly lowered. In 

case of DNN. If DNN is used with small amount of data, 

its performance is not good. However, if a large amount 

of data are acquired and the number of events increases, 

DNN performance will be improved. 

Table VI and VII show the result according to the 

change of the dropout rate. In case of no measurement 

errors, it is shown that the performance is better when 

dropout rate is small. 

 

Table I: Transient classification 

Performance 

result 

Integrating time 

(sec) 

No. of Misclassification 

Training 

data 
Test data 

DNN 

3 0 0 

5 0 0 

10 0 0 

 

Table II: Classification results using the DNN model with 

measurement errors 

Performance 

result 

Integrating 

time (sec) 

Total data = 620 

-3% bias 

error 

3% bias 

error 

-5% bias 

error 

5% bias 

error 

Random 

(below3%) 

Random 

(below5%) 

No. of 

Misclassification 

3 4 7 3 8 6 6 

5 2 2 3 4 2 3 

10 3 3 4 7 4 4 
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Table III: Transient classification (safety system actuation)  

Performance 

result 

Total data = 620 

Integrating time (sec) 
No. of 

Misclassification 

DNN 

3 4 

5 2 

10 3 

 

Table IV: Comparison (without measurement error) 

Performance 

result 

Integrating time 

(sec) 

No. of 

Misclassification 

DNN 

3 0 

5 0 

10 0 

SVC 

3 0 

5 0 

10 0 

 

Table V: Comparison (with measurement error)  

Performance 

result 

Integrating 

time (sec) 

-3% bias 

error 

3% bias 

error 

-5% bias 

error 

5% bias 

error 

Random 

(below3%) 

Random 

(below5%) 

 

DNN 

3 4 7 3 8 6 6  

5 2 2 3 5 2 3  

10 3 3 4 7 4 4  

SVC 

3 0 1 1 2 1 1  

5 1 1 1 2 0 1  

10 2 4 4 7 0 0  

 

Table VI: The result from change of drop rate (without 

measurement error)  

Performance 

result 
Drop rate (%) 

No. of Misclassification 

Training data Test data 

DNN 

0 0 0 

3 0 0 

5 0 0 

10 1 0 

20 8 1 

 

Table VII: The result from change of drop rate (with 

measurement error)  

Performance 

result 

Total data = 620 

Drop rate 

(%) 

-3% bias 

error 

3% bias 

error 

-5% bias 

error 

5% bias 

error 

Random 

(below3%) 

Random 

(below5%) 

DNN 

0 4 7 3 8 6 6 

3 4 7 3 8 6 6 

5 4 7 3 8 6 6 

10 4 7 3 8 6 6 

20 4 7 3 8 6 6 
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Fig. 1. The concept of deep learning  
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Fig. 2. DNN model 
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Fig. 3. Vanishing gradient 

 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2017 

 

 

-4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

4

5

6

 

 

O
u

tp
u

t 
v

a
lu

e

Input value

 
Fig. 4. Graph of ReLU function 
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Fig. 5. The concept of dropout 
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Fig. 6. Event classification using the DNN model 

 

3. Conclusions 

 

In this study, the proposed DNN model is verified by 

using the simulation data of MAAP4 code. We used an 

initial integral value of the simulated sensor signals to 

identify the NPP accidents. The training data was used 

to train the DNN model. And, the trained model was 

confirmed using the test data. As a result, it was known 

that it can accurately classify seven events. Since the 

proposed algorithm uses initial data after reactor trip 

and the initial simulation data was known to be accurate, 

it can be effectively used in an actual NPPs as well. By 

providing accurate information for accidents in a NPP, 

it will be helpful for the operators to rapidly respond to 

the accident situations. Also, if more data will be gained 

in the future, it is expected that better performance will 

be shown by using deep learning as the core technology 

of the fourth industrial revolution. 
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