# Pohang synchrotron radiation facility (PLS-II) and its application activities

1

신 현 준 방사광연구단, 포항가속기연구소



### Use of x-rays; a probe based on light-matter interaction...



PES: photoemission/ photoelectron spectroscopy XPS: X-ray photoemission/ photoelectron spectroscopy XRD: X-ray diffraction XRS: X-ray scattering SAXS: Small angle x-ray scattering WAXS: Wide angle x-ray scattering XAS: X-ray absorption XAFS: X-ray absorption fine structure XES: X-ray emission spectroscopy XRF: X-ray fluorescence



2



10<sup>7</sup> └─ 10<sup>0</sup>

**10**<sup>1</sup>

10<sup>2</sup>

10<sup>3</sup>

Photon Energy (eV)

**10<sup>4</sup>** 

10<sup>5</sup>

### x-ray scattering (XRS), x-ray diffraction (XRD)



| Constructive | e interference |
|--------------|----------------|
| at Bragg     | condition      |

| $2d\sin(\theta) = \lambda$ | $\Rightarrow$ | $d = \lambda / 2 \sin(\theta)$ |
|----------------------------|---------------|--------------------------------|
| $\theta$ :0.01° ~ 90°      | $\Rightarrow$ | <i>d</i> ∶1µm ~ 0.02 nm        |





CO<sub>2</sub> capture from humid flue gases and humid atmosphere using a microporous coppersilicate



## **Powder Diffraction**



80

100

5



60

2-Theta (Degrees)

40

A zeolite family with expanding structural complexity and embedded isoreticular structures



## **Protein crystallography**



Η.

## Spectroscopy (electronic structure); XAS & XPS basic ...





H. J. Shin

7

### X-ray absorption spectroscopy (XAS): practical use of soft x-rays...



element, crystal structure, oxidation state, chemical states, magnetic moment, electronic structure, ...

H. J. Snin

## XPS & XAS; practical use of spectroscopy...

H. J. Shi

#### Science

**HIGHLIGHTS OF 2015** 

\*

Observation of tunable band gap and



## **Extended X-ray Absorption Fine Structure (EXAFS)**



$$E_{\text{(photon)}} - E_{\text{o(electron binding)}}$$
$$= K.E. = \frac{h^2k^2}{2m_e}$$





#### REPORT

Colloidally prepared La-doped BaSnO<sub>3</sub> electrodes for efficient,



#### Perovskite solar cells (PSCs)

photostable perovskite solar cells

#### anthanum (La)–doped BaSnO3 (LBSO) perovskite as an

electron-transporting layer :

a steady-state power conversion efficiency of 21.2%, versus 19.7% for a mp-TiO $_2$  device

| Au<br>PTAA<br>Halide Perovskite<br>Oxide Perovskite<br>FTO | AM. 1.5 illumination<br>Full Spectrum<br>Solar Simulator<br>UV: VIS B V 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | Light Stability<br>Light Stability<br>Hight Clability<br>Light Stability<br>Light Stability |





### Microscopy-spectroscopy /// Spectro-microscopy (Nanoscopy)



- improvement of focal power/ focusing lens ...
  - > minimal variation of focal position ...
    - detectors for fast imaging ...

nice softwares ...



#### Heterophase in homojunction

С

2H

2H

Te 3c

580

1T'

um

Mo 3d







Different lattice symmetry No  $MoO_3$ , TeO<sub>2</sub>, other element..



# \* \* \* //// HIGHLIGHTS OF 2015

# Phase patterning for ohmic homojunction contact in MoTe<sub>2</sub>



Sungkyunkwan Univ., Heejun Yang, Young Hee Lee

Scanning Photoelectron Microscopy(SPEM) @ 8A1

PAL 🔿



➤ 개발 여지가 많음: 정밀도 (에너지분해, 공간분해, 편광 정도), 첨단화 (사용의 편의성, 효율, 자동화, 실시간, operando), 새로운 원리 (편광, 검출기, 시분해, two photon), ...



14



#### Performed beamtime proposals and user numbers ... publication status...



#### Number of publication and average IF.

| 구 분        | '96 | '97 | '98 | '99 | '00 | '01 | '02 | '03 | '04 | '05 | '06 | '07 | '08 | '09 | '10 | '11 | '12 | '13 | '14  | '15  | '16  | 합계    |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-------|
| SCI<br>논문수 | 3   | 14  | 48  | 77  | 64  | 112 | 145 | 163 | 179 | 188 | 256 | 326 | 390 | 385 | 407 | 451 | 293 | 353 | 551  | 451  | 418  | 4,856 |
| 편당 I.F.    | 2.6 | 1.8 | 2.6 | 2.5 | 2.4 | 2.5 | 3.1 | 3.2 | 3.1 | 3.5 | 3.4 | 3.6 | 3.8 | 3.6 | 3.3 | 3.8 | 3.9 | 4.4 | 4.24 | 5.86 | 6.19 |       |



16

#### H. J. Shin

## **Beamlines:**

Agreement beamlines; KIST (2), GIST, UNIST, KRIBB, POSTECH

Exclusive beamlines; POSCO, GIST, MPK, IBS

Beamline department subsections: Structural biology Materials chemistry Eco-friendly materials Energy Materials Nano-materials spectroscopy Spectro-nanoscopy ITCC

## **Applications to :**

> New materials: semiconductor, energy, bio, life-science, geoscience,

natural resources, catalysts, battery, nano & bio, etc.

putting an emphasis on industrial application.



**General purpose beamlines:** we are trying to maintain competitiveness over other worldwide techniques.

XRS, SAXS, WAXS, PX PES (XPS), XAS, XAFS u-probe (u-XRF, u-XAFS)

→ multimodal, in-situ techniques.

#### Top notch science/technique beamlines:

Uniqueness, world best, world first... State of the art instrumentations.
Top notch scientific objectives (strongly correlated systems, vortex, ...) SAR-PES, AP-XPS, XMCD & multimodal, XAS in medium energy, CDI, PCXS, Ptychography tr-XRS, tr-THz nano-imaging, nano-XAS, nano-XPS full automation, high throughput, ...
→ multimodal, in-situ techniques.

#### Industrial application: \* ITCC \*

High throughput → FBDD (2018-2020 yr.)/ SAXS/ Imaging High energy x-ray imaging for thicker samples. Spectro-microscopy (u-XAFS, u-XRF, STXM, SPEM) AP-XPS, XPS on 2D materials, semiconducting device materials

→ multimodal, in-situ techniques.



#### **Beamlines under consideration**

→ Putting efforts on industrial application has become our new mission...

**<u>5C PX FBDD</u>** (2018-2020): → endstation to be upgraded. Full automation and FBDD facility setup

<u>2C high energy x-ray science (HE – XRS)</u> (MPW): (2019 ? – 2021 ?) → to be constructed. Hard x-ray imaging for tomographic information.. High energy extreme condition science; includes high pressure science (strong user consortium is established)

#### **Beamline renovation plan to attract industries:**

- ✓ A company is requiring an hard x-ray insertion device beamline for SAXS.
- ✓ Collaboration is on-going with POSCO and SKhynix, and other companies are showing interests...
- → We may have to construct beamline(s), or renovate existing beamline(s), or build an efficient platform (comprised of several beamlines) for industrial application.

#### 3D nano structure inspection

Courtesy of Dr. J. Lim

#### Black silicon for solar energy



#### Nano composite in bumper



## 방사광 융합 분석 실적 추이





PA

| 항목                   | 2014 | 2015 | 2016 |
|----------------------|------|------|------|
| 방사광 융합분석             | 14   | 23   | 50 건 |
| 중소기업<br>설비지원         | 78   | 62   | 74 건 |
| 선도기술 공동개발<br>(기업 과제) | 2    | 7    | 7 건  |
| 기업초청 및<br>현장방문세미나    | 27   | 19   | 15 회 |

H. J. Shin



#### H. J. Shin

# Thank you !