
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May. 17-18, 2018

Enhancement of the FTeMC software for fault tree top event probability evaluation using

Monte Carlo approach

Sang Hoon HAN*

Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon, 305-353, Korea
*Corresponding author: shhan2@kaeri.re.kr

1. Introduction

The Monte Carlo method [1] can be used as a

supplement to the minimal cut set approach when

quantifying a fault tree, especially if minimal cut sets

cannot be generated or if the results are in doubt.

KAERI (Korea Atomic Energy Research Institute) has

developed software called FTeMC (Fault Tree top event

probability Evaluation using Monte Carlo simulation) [2].

The Monte Carlo approach requires a lot of

calculations for a large number of samples, and thus it

can take a long time. In particular, the fault tree model of

the domestic PSA (Probabilistic Safety Assessment)

includes circular logic. In this case, the Monte Carlo

method becomes more complicated and takes a long time

to calculate.

This paper summarizes a study for reducing the

computation time for a fault tree with circular logic when

using the Monte Carlo method.

In Section 2, we explain the basic method of

calculating the top event probability of a fault tree using

the Monte Carlo method. In Section 3, we describe

algorithms for reducing the calculation time. Section 4

presents the calculation time for several selected fault

trees and conclusions.

2. Basic algorithm for Monte Carlo method

The Monte Carlo method for a fault tree analysis is a

method for estimating the probability by counting how

many times a failure has occurred during a number of

trials. The top event probability estimation of a fault tree

using the Monte Carlo method can be performed as

follows [3].

- Repeat the following for N samples

 Determine the state (True or False) of each basic

event randomly

 Determine the state (True or False) of the top

event using the states of basic events

- If F failures occurred during N trials, the top event

probability is evaluated as F / N

3. Algorithms to save the calculation time

The Monte Carlo method repeats the same calculation

for a large number of trials. Small changes in recurring

items can have a significant impact on the calculation

time.

After reviewing and testing the algorithm of the

FTeMC software, we have found that the following items

have a large impact on the calculation time;

- Randomly determine the state of each basic event

 Dagger sampling [1] is effective. It is

implemented in the FTeMC.

- Calculate the state (failure or success) of the top

event

 Minimization of the number of calculations

when calculating the state for each gate

 Data array optimization and ordering of child in

a gate

 Fault tree simplification technique which is also

used for minimal cut set generation

 More calculation time is required for a fault tree

containing circular logic. A new top-down

iteration approach is developed [6].

A description of each item is shown below.

3.1 Fault tree simplification

Simplification of a fault tree greatly affects the

calculation time for the minimum cut sets [4, 5]. It also

affects the calculation time for the Monte Carlo method.

The following features are reviewed and most of them

are implemented in the FTeMC. However, the Shannon

decomposition does not apply to the FTeMC because of

its effectiveness compared to algorithm development

efforts.

Merge gate

- It combines the same type of gates. As shown in the

figure below, G2 and G3 are the same OR gates,

and thus are combined into one gate.

- It can reduce the number of gates to be calculated

Fig. 1. Merge gate

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May. 17-18, 2018

Remove duplicates

- It deletes the duplicated child in a gate.

- This can be caused by the process of simplifying the

fault tree or by a user’s mistake.

Fig. 2. Remove duplicates

Modularization

- It replaces an independent subtree or a module with

a basic event.

- It reduces the size of the fault tree.

Fig. 3. Fault tree modularization

Shannon decomposition

- This is a powerful feature for fault tree

simplification.

- It does not apply to the FTeMC because it is not as

effective as algorithm development efforts.

- It can simplify a fault tree for a case in which T(r=1)

= 1 as follows:

 T = r * T(r=1) + /r * T(r=0) = r + T(r=0)

- An example of Shannon decomposition is shown

below.

Fig. 4. Shannon Decomposition

3.2 Optimization of fault tree structure

It is necessary to check the state of each gate to

calculate the state of the top event. The following

features are implemented into the FTeMC.

Skip unnecessary children

- When calculating the state of each gate using the

states of its children, unnecessary children are

skipped without checking once the state of the

gate is determined.

- An OR gate is True if any child is True. When

checking the states of the children, if anyone is

true, the rest of the children do not need to be

examined. A similar approach can be used for a

AND gate.

- It can reduce the number of tests in each gate.

Fig. 5. Skip unnecessary children

Ordering of children

- It sorts the children in descending order of

probability in an OR gate, and in ascending order of

probability in a AND gate.

- It is recommended to estimate the probability of

each child heuristically.

- It arranges basic events first rather than gates.

- It can reduce the number of tests in each gate

Fig. 6. Ordering of children

Restructuring of the fault tree array

- The FTeMC examines a fault tree with a top-down

depth-first search. It recreates the entire fault tree

structure in this order.

- It removes unused gates and basic events.

- It is for efficient memory access

- The gates are stored in a fault tree array in the order

of accessing the fault tree.

- For the example shown in the figure below, the

order will be G4, G2, G3, G1, G6, G5 and TOP.

Module

Independent
Subtree

Sg = False // initialize State of Gate Sg

For each Ci // Ci = i-th child

If Si is True // Si = state of Ci

Sg = TRUE

Exit For

Skip

P(A) > P(B) > P(C) > P(D)

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May. 17-18, 2018

Fig. 7. Restructuring of fault tree array

3.3 Top-down iteration approach

The FTeMC has implemented several approaches to

calculate the state of the top event. The characteristics of

the approaches are as follows;

- Top-down approach: Once the state of the gate is

determined, it is efficient to skip the remaining

children without checking them. However, it

cannot be applied to a fault tree with circular logic.

- Top-down circular approach: It can be used for a

fault tree with circular logic [3]. When a specific

gate is involved in circular logic, the gate can have

different results depending on the location, and

thus it requires repeated calculations which takes

a long time.

- Iteration approach: it is an efficient approach for

a fault tree with circular logic. However, it has a

disadvantage in calculating the state of all gates.

Note that top-down approach does not need to

calculate the states of all gates.

A new algorithm called a top-down iteration approach

[6] was recently developed.

- The top-down circular approach is modified to not

recalculate the gate once the state is calculated. The

modified approach produces the same result as the

iteration approach. However, the children can be

skipped once the state of a gate is determined. The

calculation for the states of the gates are repeated

until the results converge for fault trees with

circular logic.

- It is a way to combine the advantages of top-down

circular and iteration approaches.

- This is an effective method for a fault tree with

circular logic, and does not degrade the

performance much better than a top-down approach

for a fault tree without circular logic.

The algorithm is illustrated in Figs. 8 through 10.

Fig. 8. Iteration part for top-down iteration

approach

Fig. 9. Function to calculate the state of a gate/event

Fig. 10. Function to calculate the state of a gate

4. Application results and summary

The various features described in Section 3 have been

applied to the FTeMC Version 2. Table 1 shows the test

results for the selected fault trees. The fault tree models

come from the PSA models for nuclear power plants.

- P1 and P2 are fault trees without circular logic.

- M1 and M2 are fault trees for multiple unit PSAs,

and thus the size of the models are large. They also

have circular logic.

- C1 and C2 are PSA models including multiple

initiating events. The CDF (Core damage frequency)

for C1 or C2 can be calculated by calculating

CCDPs (Conditional core damage probability) for

each initiating event and combining them, as shown

in remark 7 in Table 1.

V1 represents FTeMC Version 1, and V2a, V2b and

V2c represent FTeMC Version 2. The characteristics of

each version are given in remarks 1 through 4. V2c uses

all features developed in FTeMC Version 2.

On average, V2a is 2.1 times faster than V1, V2b is

2.2 times faster than V2a, and V2c is 3.6 times faster than

V2b. Overall, FTeMC Version 2 is 3 to 50 times faster

than Version 1.

All features implemented in FTeMC Version 2 appear

to be effective, such as an optimization of the fault tree

7

4

2

1

3

6

5

// Main iteration part

S() for Gates = False // Initialize Vector S = False for Gate

Do // Repeat until converged

Converged = True // Initialize a variable for convergence checking

C() = False // Initialize Vector C (Ci : True if i-th gate calculated)

St = GetState(T) // Calculate the state of the top event, recursively

Until (Converged)

// Top-down function to calculate the state of g, Sg

Function GetState(g)

If (g is a gate and Cg=False) then // for a not-calculated gate

Cg = True // If Calculated, Cg = True

s = CalculateGateState (g) // Calculate the State of Gate g, Sg

if (s ≠ Sg) then // Check convergence

Converged = False

Sg = s

Return Sg

// Sub-function to calculate the state of a Gate, Sg

Function CalculateGateState(g)

If (g is a OR gate) then // for a OR gate

For each child j ∈ g // for each child of g

Sj = GetState (j)

if (Sj ≡ True) then // if any one child is True

return True // Sg = True

return False // Otherwise, Sg = False

… // For other type of gate

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May. 17-18, 2018

structure, fault tree simplification, and the top-down

iteration approach.

Acknowledgement

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korean

government (MSIT: Ministry of Science and ICT) (No.

2017M2A8A4015287).

REFERENCES

[1] Kumamoto, H., 1980. Dagger-sampling Monte Carlo for

system unavailability evaluation. IEEE Transactions on

Reliability R-29 (2), 122–125 (1980)

[2] FTeMC Quick Guide - Fault Tree top event probability

Evaluation using Monte Carlo simulation, KAERI,

KAERI-ISA-Memo-FTeMC-01, Rev. 1, 2017

[3] Sang Hoon Han and Ho-Gon Lim, Top event probability

evaluation of a fault tree having circular logics by using

Monte Carlo method, Nuclear Engineering and Design, 243

(2012) 336-340

[4] Woo Sik Jung, Advanced Features and Performance

Evolution of Fault Tree Quantifier FORTE, 5th Korea-

Japan PSA Workshop, Seoul, Korea, 1999

[5] llkka Niemela, On simplification of large fault trees,

Reliability Engineering and System Safety 44 (1994) 135-

138

[6] A top-down iteration algorithm for Monte Carlo method for

probability estimation of a fault tree with circular logic, to

be published (2018)

Table 1. Summary of calculation time for selected fault trees

Case
V1(1)

(sec)

V2a(2)

(sec)

V2b(3)

(sec)

V2c(4)

(sec)

of

Samples
Model

P1(5) 31 14 8 8 106 No Circular Logic, 4530 Gates/1635 Basic Events

P2(5) 32 14 12 13 106 No Circular Logic, 3654 Gates / 2095 Basic Events

M1(6) 5350 1477 597 708 106 Circular Logic, 49231 Gates / 23734 Basic Events

M2(6) 3198 1495 410 65 106 Circular Logic, 37345 Gates / 21217 Basic Events

C1(6, 7) 857 790 335 39 106
Circular Logic, 4530 Gates / 1258 Basic Events

7 Initiating Events

C2(6, 7) 3013 2442 1537 378 106
Circular Logic, 5056 Gates / 2458 Basic Events

20 Initiating Events

1) V1 : FTeMC Version 1, w/o optimization of FT structure, w/o FT simplification

2) V2a : FTeMC Version 2, Optimization of FT structure, w/o FT simplification

3) V2b : FTeMC Version 2, Optimization of FT structure, FT simplification

4) V2c : FTeMC Version 2, Optimization of FT structure, FT simplification, Top-down iteration approach

5) P1 and P2 have no circular logic. Top-down approach is used for V1, V2a, V2b.

6) M1, M2, C1 and C2 have circular logics. Iteration approach is used for V1, V2a, V2b.

7) C1 and C2 have several initiating events. CDF is calculated by summing the result for each initiating event:

CDF = ∑(𝑓(𝐼𝐸𝑖) ∗ 𝐶𝐶𝐷𝑃(𝐼𝐸𝑖 = 𝑇𝑟𝑢𝑒

𝑖

, 𝐼𝐸𝑗≠𝑖 = 𝐹𝑎𝑙𝑠𝑒))

