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1. Introduction 
 

The state of knowledge correlation (SOKC) arises 
because, for identical or similar components, the state-
of-knowledge about their failure parameters is the same. 
In other words, the data used to obtain mean values and 
uncertainties of the parameters in the basic event models 
of these components may come from a common source 
and, therefore, are not independent, but are fully 
correlated. 

When the basic event mean values and uncertainty 
distributions are propagated in the PSA model without 
accounting for the SOKC, the calculated mean value of 
the relevant risk metric and the uncertainty about this 
mean value will be underestimated due to the effect of 
the SOKC directly. In order to account SOKC, we 
generally perform Monte Carlo uncertainty analysis. 
However, the results of Monte Carlo uncertainty 
analysis are not fixed and there could be a possibility of 
bias in the results. 

This paper proposes an analytical SOKC solver to 
provide exact mean risk metrics accounting for the 
SOKC. 

 
2. State-of-knowledge Correlation (SOKC) 

 
The ASME/ANS standard on PRA [1] requires that 

both parameter and model uncertainties be addressed. 
For example, parameter uncertainties are addressed via 
the quantification process of the core damage and large 
early release frequencies and model uncertainties have 
to be identified and characterized. The ASME/ANS 
standard provides the two supporting requirements (QU-
A3 and QU-E3) that specifically address the treatment 
of the state-of-knowledge correlation. The ASME/ANS 
standard notes the following: 
• For Capability Category II and III, the mean and the 

distribution for the risk metric estimates are usually 
obtained by propagating the parameter uncertainties of 
the PRA inputs through the analysis using the Monte 
Carlo or similar sampling method.   

• The difference between Capability Category II and 
Capability Category III is that in Capability Category 
II the propagation of the uncertainty is only carried 
out for significant contributors in the significant 
accident sequences and cutsets. 

 
Table I. ASME/ANS PRA Standard Supporting 

Requirements Related to SOKC 
 Capability Capability  

Category II Category III 
QU-
A3 

ESTIMATE the 
mean CDF 
accounting for the 
“state-of-
knowledge” 
correlation between 
event probabilities 
when significant. 

CALCULATE the mean 
CDF from internal events 
by propagating the 
uncertainty distributions, 
ensuring that the "state-of-
knowledge" correlation 
between event probabilities 
is taken into account. 

QU-
E3 

ESTIMATE the 
uncertainty interval 
of the CDF results. 
ESTIMATE the 
uncertainty intervals 
associated with 
parameter 
uncertainties (DA-
D3, HR-D6, HR-
G8, IEC15) taking 
into account the 
“state-of-
knowledge” 
correlation. 

PROPAGATE parameter 
uncertainties (DAD3, HR-
D6, HR-G8, IE-C15), and 
those model uncertainties 
explicitly characterized by 
a probability distribution 
using the Monte Carlo 
approach or other 
comparable means. 
PROPAGATE uncertainties 
in such a way that the 
“state-of-knowledge” 
correlation between event 
probabilities is taken into 
account. 

 
NUREG-1855 [2] provides on how to address the 

treatment of parameter uncertainty when using PSA 
results for risk-informed decision-making. NUREG-
1855 addresses the characterization of parameter 
uncertainty; propagation of uncertainty; assessment of 
the significance of the state of-knowledge correlation; 
and comparison of results with acceptance criteria or 
guidelines. NUREG-1855 notes the following: 
• In carrying out the propagation, it is important to 

consider the state of knowledge correlation (SOKC) 
between events. The SOKC arises because, for 
identical or similar components, the state-of-
knowledge about their failure parameters is the same. 
In other words, the data used to obtain mean values 
and uncertainties of the parameters in the basic event 
models of these components may come from a 
common source and, therefore, are not independent, 
but are correlated. 

• When the basic event mean values and uncertainty 
distributions are propagated in the PSA model without 
accounting for the SOKC, the calculated mean value 
of the relevant risk metric and the uncertainty about 
this mean value will be underestimated. The values 
can be underestimated due to the effect of the SOKC 
directly, as well as due to incorrect screening out of 
cutsets in truncation due to neglect of the SOKC in 
calculating cutset frequencies. 
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To account for this correlation when propagating the 

basic event values and their uncertainty in a Monte 
Carlo (or similar) sampling trial, at each pass through 
the process, the distribution based on the pooled data 
should be sampled once to obtain a failure rate, and that 
same failure rate should be used to generate the sample 
value for all the correlated basic events in the cut set 
equations. In general then, to account for the SOKC, the 
same information is used to generate the estimates of the 
parameters used to evaluate the probabilities of a group 
of basic events whose parameter values were obtained 
from correlated data. This means that when using a 
Monte Carlo (or similar) approach to propagate 
uncertainty, for each pass through the process the same 
sample value drawn from the probability distribution of 
the parameter should be used to calculate the basic 
event probability of all basic events within the group. 

Let X be a random variable corresponding to a basic 
event that is correlated with other basic events in a 
minimal cut set (MCS). To illustrate SOKC, consider 
the simple case where two MOVs are in parallel, 
represented by variables X1 and X2 that are correlated, 
and system failure occurs when both fail to open. The 
equation when the failure probabilities of the two 
MOVs are identical (i.e., the distributions of the failure 
probabilities express the same state of knowledge) is 

                                T = X2                               (1) 
where T represents system failure. 
If X1 and X2 are considered to be independent, the 
equation used for system failure would be 

                            T = X1 X2                     (2) 
The underestimation of the mean of an MCS that 

contains correlated basic events is particularly 
significant when the expected value E(Xn) >> En(X). 

 
3. SOKC Effects of Log-normal Distribution 

 
Log-normal distribution is a continuous probability 

distribution of a random variable whose logarithm is 
normally distributed. Thus, if the random variable X is 
log-normally distributed, then Y = ln(X) has a normal 
distribution. Likewise, if Y has a normal distribution, 
then X = exp(Y) has a log-normal distribution. A 
random variable which is log-normally distributed takes 
only positive real values.  

Given a log-normally distributed random variable X 
and two parameters μ and σ that are, respectively, the 
mean and standard deviation of the variable’s natural 
logarithm, then the logarithm of X is normally 
distributed. The given log-normal distribution can be 
notated by “Lognormal(μ, σ2).” 

Wikipedia, the free encyclopedia, tells us the 
following characteristics of Log-normal distribution: 
1) If X ~ Lognormal(μ, σ2) is distributed log-normally, 

then  
                      Xa ~ Lognormal(aμ, a2σ2).             (3) 

2) If Xj ~ Lognormal(μj, σj
2) are n independent log-

normally distributed variables, and , 
then Y is also distributed log-normally:  

                Y ~ Lognormal ( ).          (4) 
3) Let Xj ~ Lognormal(μj, σj

2) be independent log-
normally distributed variables with possibly varying 
μ and σ parameters, and . The distribution 
of Y has no closed-form expression, but can be 
reasonably approximated by another log-normal 
distribution Z at the right tail. Its probability density 
function at the neighborhood of 0 has been 
characterized and it does not resemble any log-
normal distribution. A commonly used approximation 
due to L.F. Fenton (but previously stated by R.I. 
Wilkinson and mathematical justified by Marlow) is 
obtained by matching the mean and variance of 
another lognormal distribution: 

 

                            (5) 
 

4. Analytical SOKC Solver for PSA 
 

In probabilistic safety assessment (PSA) for a nuclear 
power plant, the risk measures (e.g., core damage 
frequency and large early release frequency) are 
computed from cut set equations as 

                                    (6) 
Each MCS contains independent basic events X’s and 

correlated sets T’s as  
              (7) 

where X’s and T’s are also independent of each other. If 
all basic event is distributed log-normally, then mean 
and distribution of the expected value of a MCS can be 
exactly calculated by Eq.(3) and Eq.(4). 

The mean of a risk metric accounting for the SOKC 
can also be exactly calculated by Eq.(6), but the 
distribution of the risk metric accounting for the SOKC 
could not be analytically calculated. However, the 
distribution can be approximated by Eq.(5).  

The distribution of the risk metric accounting for the 
SOKC can be calculated by Monte Carlo uncertainty 
analysis approach [3, 4]. The newly proposed approach 
to account for the SOKC is a combined one which 
calculates mean values by the proposed analytical solver 
and error factors (as distribution parameters) by Monte 
Carlo simulation. 

 
5. Application to Example PSA model 
 
In order to assess the adequacy of the proposed 

approach to NPP PSA models, an example PSA model 
is selected as follows: 

• Level 1 internal event PSA model of a plant 
• CDF : 1.093E-6/years (by rare event approximation) 
• # of MCSs : 24,083 

– SOKC sets : 3,641 
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– Non-correlated sets : 20,442 

Table II shows the Monte Carlo simulation results of 
Example PSA model. 

 
Table II: Monte Carlo simulation results (from 100 runs 

of sample size 1E5) 

 
E(CDF) EF of CDF 

Mean (A) 1.103E-6 4.496 
standard 

deviation (B) 1.335E-8 2.044E-2 

(B) / (A) 1.210 % 0.455 % 
minimum 1.071E-6 4.434 

maximum 1.142E-6 4.544 
 
Using the proposed analytical SOKC solver based on 

Eq. 3, 4, and 6, the CDF for Example PSA model 
accounting SOKC is calculated as  

• 1.10262285E-6/years (by the analytical solver). 
This value is exact for Example problem. 

Using Eq. 5, we can approximate the mean and 
distribution of Example problem as follows: 

• μ = -15.52384, σ2 = 3.612046 
• E(CDF) = 1.1026224E-6/years 
• EF = 22.7851  

Comparing with Table II, it is shown that the 
approximation equation (Eq. 5) provides a very close 
expected value, but overestimates EF. 
 

5. Conclusions 
 

An analytical SOKC solver is developed in this study. 
This SOKC solver provides exact risk metrics 
accounting for the SOKC without Monte Carlo 
uncertainty analysis. The distribution of risk metrics 
accounting for the SOKC has no exact solver, but it can 
be reasonably obtained by Monte Carlo technique. 
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