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1. Introduction 

Fitness-For-Duty (FFD) refers to a worker’s physical, 

physiological and psychological ability to competently 

and safely perform their tasks [1]. Implementing an 

effective FFD program provides reasonable assurance of 

human performance that workers do not pose a safety or 

security risk. The U.S. Nuclear Regulation 

Commission’s (NRC’s) regulation 10 CFR part 26, 

highlighted the importance of FFD programs in nuclear 

facilities [2]. 

To comply with the NRC regulation, nuclear industries 

implemented a drug & alcohol test and fatigue 

management (through reporting an employee’s working 

hours) [3]. However, current FFD programs are limited 

in evaluating psychological distress. Detection comes 

with time delays and no reliable tools are available to 

measure actual fatigue. To address these limitations, this 

study proposed to develop a classification model for 

identifying potentially unfit for duty workers (Alcohol-

use, Sleep-deprivation, High stress, Depression and 

anxiety) based on bio-signals.   

 

2. Material & Method  

A total of 124 subjects, from 20 to 29 years of age, 

participated in the experiments.114 subjects’ bio-signals 

data were used for training a classification model and 

validating the model. After developing the model, 10 

subjects whose there fitness status were blinded was also 

used to test fitness-status prediction.  All subjects were 

in generally good health, took no medications, and had 

normal sleep habits. These subjects were categorized into 

Normal group (A: 36 subjects), Alcohol-use group (B: 

21subjects), Sleep-deprived group (C: 11subjects), 

Heavy chronic stress group (D: 26 subjects), Depression 

group (E: 10 subjects), and Anxiety group (F: 10 

subjects). The standards of classifying these groups are: 

1) No caffeine, no smoking, no alcohol-use, no 

medications, and above 8 hours sleep; 2) above 0.03% 

Blood Alcohol Concentration (BAC); 3) less 1-2 hours 

of sleep over a 48 hours period; 4) above 26 stress scores 

of Depression Anxiety Stress Scales (DASS-21) [4] 

survey; 5) above 21 depression score of DASS-21; and 6) 

above 15 anxiety score of DASS-21.  

Regardless of the type of sleep-deprived/alcohol-

use/normal group manipulation used, the same protocol 

was applied for each visit. This study selected 

Electroencephalogram (EEG), Electrocardiogram (ECG), 

Galvanic Skin Response (GSR), Respiration, Blood 

Volume Pulse (BVP), and dynamic changes in blood 

pressure, the signal from the PPG sensor (BPHEG). The 

bio-signals were recorded in the resting states (Eye 

closed and Eye open). An EEG system with 19 channels 

(BrainMaster Discovery 24ETM (Brain Master 

Technologies Inc.)) was used to record EEG data with 

Linked ears reference (LE). The Polygraph BiO device 

was also used to record ECG and other bio-signals from 

skin conductivity, respiration sensor and PPG sensor. 

EEG frequency bands were categorized into the 

fourteen bands: 1) Delta: 1-4Hz; 2) Theta: 4-8Hz; 3) 

Alpha:8-12Hz; 4) Beta: 12-25 Hz;  5) High Beta: 25-30 

Hz; 6) Gamma: 30~40Hz; 7) High Gamma:40~50 Hz, 8) 

Alpha1: 8-10Hz; 9) Alpha2: 10-12Hz; 10) Beta1: 12-

15Hz; 11) Beta2: 15-18Hz; 12) Beta3: 18-25Hz; 13) 

Gamma1: 30-35Hz; and 14) Gamma2: 35-40Hz [5]. 

EEG raw data were subjected to a Fast Fourier 

Transform (FFT) algorithm to calculate the absolute 

(μV2) power and relative (%) power and the FFT Power 

Ratio (Arb). Absolute Power (AP) is the actual power 

(voltage) in a subject’s EEG database (Power is 

microvolts squared). Relative Power (RP) is the relative 

power of each given band/sum of power from 1 to 50 Hz. 

FFT Power Ratio is calculated by one given band/ other 

given band. 

For developing ECG indicators, RR (or NN) intervals 

(RRI or NN) were extracted from the ECG recordings 

during 2 min window. Typically two methods of analysis 

are reliable: time domain (beat-to-beat analysis) and 

frequency domain (calculating power spectrum density). 

The ECG frequency bands are categorized into Very 

Low Frequency (VLF: 0.0033-0.04 Hz), low frequency 

(LF: 0.04 - 0.15 Hz) and high frequency (HF: 0.15 - 0.4 

Hz). From these two methods, ECG data can calculate 1) 

mean RR, 2) SDNN (standard deviation of NN intervals), 

3) RMSSD (square root of the mean of the squares of the 

successive differences between adjacent NNs), 4) NN50 

(the number of pairs of successive NNs that differ by 

more than 50 ms), 5) HF, 6) LF and 7)LF/HF. 

Additionally, GSR, Respiration, BVP and BPHEG 

indicators were identified for measuring a worker’s FFD 

status.  

 

3. Results from Bio-signal Analysis 

To categorize the differences in the six groups, this 

study performed the multivariate test of significance. 
Figures 1 and 2 show the differences between the mean 

values of possible EEG indicators depending on a 

subject’s different FFD status. The significant indicator 

(P**<0.01 and P*<0.05) differences between the two 

groups were marked as**(blue box) and *(yellow box) 

in pairwise comparison table below the figures. From 

these results, 76 EEG indicators can define a subject’s 

FFD status. These differences could be used to detect an 

NPP worker with an abnormal status.  
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Figure 1. The Absolute Power differences of Six 

groups Group mean (±𝑆. 𝐸. ) Absolute Power difference 

(y-axis) between Six groups for Seven indicators (x-axis 

during Eye Closed and Eye Open.  

 

 

 
Figure 2. The Relative Power differences of Six 

groups Group mean (±𝑆. 𝐸. ) Relative Power difference 

(y-axis) between Six groups for Seven indicators (x-axis 

during Eye Closed and Eye Open. 

 

In Alcohol-use group (B), the absolute and relative 

power of theta, alpha and high beta increased as shown 

in fig.1-2. These results were quite reliable based on 

previous studies. Higher absolute beta power of drunken 

people compared with those of healthy controls have 

consistently been reported [6-8]. Some researchers found 

that alcohol consumption has been associated with an 

increase in the production of EEG alpha activity [9-12], 

which is in association with euphoria [10]. In Table 1, 

alcohol-use group decreased HF and increased LF 

activity in comparison with normal group. In addition, 

SDNN value decreased and LF/HF increased similar to 

other studies [13-15]. Tsuji et al (1996) & Romanowicz 

et al. (2011) [16-17] reported acute alcohol consumption 

caused decreased parasympathetic (HF) and increased 

sympathetic LF activity. 

Sleep-deprived subjects were found to have increased 

EEG absolute power in all frequency bands comparing 

with normal status. This result was similar to Corsi-

Cabrera et al. (1992 & 1996) study [18-19]. In Table 1, 

the sleep-deprived group decreased LF and LF/HF 

indicators in comparison with the normal status. Previous 

researchers [20-21] also reported the same results. 

 
Table 1. The result of comparison of significant ECG 

indicators depending on six groups during Eye Closed 

  
Normal  Alcohol-use Sleep-Deprived  

Mean S.D. Mean S.D. Mean S.D. 

Heart 

Rate 

[bpm] 

72.12 0.33 102.03 0.47 71.41 0.82 

SDNN 

[ms] 

112.45 1.84 90.70 2.67 123.52 4.61 

RMSSD 

[ms] 

121.52 2.00 96.12 2.89 128.29 4.99 

NN50  29.85 0.28 14.04 0.40 22.36 0.69 

LF 

[ms2] 

1868.17 48.70 1952.52 70.39 937.85 121.74 

HF 

[ms2] 

1648.05 30.72 1032.44 44.40 1002.76 76.80 

LF/HF 1.72 0.06 3.56 0.09 1.38 0.15 

 
High Stress  Depression Anxiety 

Mean S.D. Mean S.D. Mean S.D. 

Heart 

Rate 

[bpm] 

78.61 0.37 69.93 0.55 72.97 0.62 

SDNN 

[ms] 

134.92 2.07 93.35 3.09 147.82 3.48 

RMSSD 

[ms] 

138.95 2.23 98.06 3.35 159.39 3.77 

NN50  24.81 0.31 23.94 0.46 20.81 0.52 

LF 

[ms2] 

1416.15 54.52 1367.40 81.68 1388.93 91.94 

HF 

[ms2] 

1146.53 34.40 1015.45 51.53 1018.18 58.00 

LF/HF 1.74 0.07 1.07 0.10 0.89 0.11 

 

Previous studies have not evaluated the clinical 

correlates of the EEG spectral profile in stress burden. 

Those with subjective stress burden was associated with 

increasing delta power and decreasing beta, high beta, 

gamma, and high gamma. Detecting stress is easier using 
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ECG rather than EEG since the ECG signal is a response 

from the autonomic nerve system similar to stress. 

Stressful people represented increased heart rate and 

decreased HF [22] as indicated in Table 1.  

Compared with controls (normal group), depressive 

group evidenced greater overall relative beta power and 

absolute beta power [23]. During the resting eyes-closed 

EEGs, depressed subjects have shown elevated alpha and 

beta compared with controls [24]. In addition, delta and 

theta band activity has also been found to be increased 

[25-26]. Depressive symptoms were related to the 

decreased SDNN, RMSSD and HF [27-28]. The greater 

the severity of the symptoms, the greater the reduction in 

heart rate variability, and the Heart Rate Variability test 

may reflect the severity of the symptoms [27, 29]. 

 In previous studies [30-31], both reduced EEG alpha 

activity and increased beta activity were thought to 

reflect increased cortical activation and have been 

associated with negative affect, such as anxiety. Our 

results showed the same result from the previous studies. 

 

4. FFD Classification and Prediction using Machine 

Learning 

This study identified 148 independent variables for the 

classification of FFD. These variables were calculated by 

frequency and time domain analysis. Dependent variable 

is a subjects’ FFD status (A: Normal, B: Alcohol-use, C: 

Sleep-deprived, D: High/heavy stress, E: Moderate 

Depression, and F: Moderate Anxiety). Using these 

dataset, we trained a classification model.  

Since our data set was not large, we used the 5-fold 

cross validation method by dividing the dataset into 5 

groups. For each division, a model was trained by using 

out-of-fold observations (remaining 4 divisions 

excepting from selected fold) and this model’s 

performance was evaluated by using in-fold data 

(Selected fold). The average test error was calculated 

over all folds. After selecting the validation method and 

training a model using MATLAB Machine learning 

toolbox, the overall accuracy of each classifier was 

evaluated. This accuracy includes the validation which 

estimates a model’s performance on new data compared 

to the training data. This value is helpful to choose the 

best model. As indicated in Table 2, the classification 

accuracy was 98.9%~99.4%.  

This study also calculated the prediction rate and 

validation accuracy. To verify the classification models’ 

performance, this research collected ten new subjects 

without any information of physiological and 

psychological status. Based on the model, we got y-

fitting value which means the predicted value. After the 

blind test, the self-evaluation measurements were 

performed by another experimenter compared with EEG 

collection experimenter. These data were used for 

comparing the prediction value from our suggested 

algorithm with collected actual value. The prediction rate 

was 76.8% using the SVM and 96.32% using the 

Ensemble Bagged Tress method. The validation 

accuracy based on new test set was almost 100%. This 

implies our classification model’s performance is good.  

 

Table.2. Classification and Prediction results 

Model 
Classification  

Accuracies 

Validation  

accuracy  
(new test) 

Prediction 

rate 

Cubic SVM 98.9% 95.26% 76.84% 

Fine KNN 97.8% 100% 65.26% 

Ensemble 

Bagged Trees 
99.4% 100% 96.32% 

 

5. Conclusion 

This research investigated the feasibility of classifying 

a worker’s FFD by using power spectrum analysis on 

bio-signals data. The analyses were based on the 

measurements on independent variables (76 EEG 

indicators, 64 ECG indicators, 2 BVP, 2 GSR, 2 

Respiration and 2 BPHEG) and dependent variable 

(subject’s fitness status: normal, alcohol-use, sleep-

deprived, heavy stress, moderate depression and anxiety) 

using MANOVA. The results showed the resting states 

(Eye closed and Eye Open) for bio-signal indicators have 

a statistically significant difference for at-risk students 

compared to healthy college students. The performance 

of the newly developed classification models were also 

judged to be reliable when identifying worker’s fitness 

status. These results can be applied directly to FFD 

monitoring systems of nuclear power plants as well as 

other high reliability fields, such as aerospace, military 

and transportation. 
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