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1. Introduction 

 
Radiation portal monitors (RPMs) were deployed at 

ports and airports to prevent contaminated or illicit 

radioactive materials from entering Korea. When RPMs 

generate alarms based on net counts above a certain 

threshold, additional detection by a field-portable 

detector, such as NaI(Tl) or cadmium zinc telluride 

(CZT), need to be carried out to identify the 

radioisotopes with high precision [1]. However, these 

detectors are expensive and sensitive to temperature 

variations. Plastic scintillators are economical and have 

the characteristic of near temperature independence with 

a variation of about 1% between 0 and 50 ℃ [2], but 

they are rarely used for radioisotope identification 

because of the overlapping of the broad Compton 

continuum and loss in photopeaks.  

In this paper, we propose an algorithm to identify 

multi radioisotopes as well as a single radioisotope 

based on plastic gamma spectra. The four radioisotopes 
22Na, 137Cs, 60Co, and 54Mn were used and a total of 16 

classes with those combinative radioisotopes were 

labeled, as shown in Figure 1. Spectra were simulated 

by the Monte Carlo N-Particle transport code 6 

(MCNP6) [3] to create the training set. Spectra were 

measured by a 2-inch EJ-200 to create validation and 

test sets. Python package Keras [4] was used to train the 

ANN presented in this paper.  

 

Fig. 1. Total 16 classes with the four combinative 

radioisotopes. 

 

2. Methods and methods 

 

2.1 Training set creation 

 

To create the training set, the gamma spectra were 

simulated by the MCNP6 using a model of the EJ-200 

scintillator. It was necessary to apply an “FT8 GEB” 

card to mimic a more realistic spectrum. The calculated 

values of “a,” “b,” and “c” coefficients through the full 

width at half maximum (FWHM) of measured spectra 

were used as input to the MCNP6 code based on a 

fitting function illustrated in Equation below where E is 

the incident gamma energy (MeV).  

                        
We used three different types of GEB cards, namely 

GEB1, GEB2, and GEB3, to diversify the spectral 

resolution. The various spectra through these GEB cards 

prevent the overfitting issue that can occur in the ANN. 

Figure 2 describes the architecture of creating the 

training set. Three hundred spectra were generated for 

each class. The radioisotope ratios of the spectra were 

randomly selected. Even though we indented to mimic 

the measured spectrum through simulation, there was a 

discrepancy in the low energy region due to 

backscattering by the surrounding structure and the 

background. In order to prevent the ANN from 

recognizing this difference as features of the class, 10 

measured spectra corresponding to each class were 

included in the training set. To augment the number of 

spectra, a spectrum of 800 channels was extracted from 

the original spectrum of 1024 channels. This extraction 

was repeated 9 times within different ranges of the 

spectrum. All extracted data, which came to 44,550 

spectra, were normalized and shuffled to be delivered to 

the ANN as the training set. 

 

 

Fig. 2. Pretreatment architecture for training set creation. 

 

2.2 Validation and Test sets creation 

 

To create the validation and test sets, gamma spectra 

were measured for the 16 classes. Figure 3 describes the 

procedure for creating the two sets. For the test set, the 

sources were placed 1 cm, 5 cm and 10 cm apart from 

the detector (referred to as 1 cm apart, 5 cm apart and 
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10 cm apart, respectively) and were measured from 1 

second to 10 seconds with intervals of 1 second. This 

procedure was repeated 3 times. Therefore, the number 

of the spectra with 1,024 channels in the test set came to 

1,440. For the validation set, on the other hand, spectra 

were generated only for 10 cm apart and a spectrum of 

800 channels was extracted in the same manner as in 

section 2.1. The number of the spectra in the validation 

set came to 1,440. 

 

Fig. 3. The procedure for creating a validation set and a test 

set. 

 

2.3 Radioisotope identification procedure 

 

In this paper, we also propose a voting process to 

identify the radioisotopes, as illustrated in Figure 4. 

Different channels of spectra ranging from 40 to 840, 60 

to 860, 80 to 880, 100 to 900, 120 to 920, 140 to 940, 

160 to 960, 180 to 980, and 200 to 1,000 were extracted 

from the 1024 channel spectrum in the test set. These 

spectra were used as input data for the ANN. 

Furthermore, the final prediction was made by a vote 

based on the corresponding predictions. 

 

 

Fig. 4. Determination procedure for final predictions through 

voting. 

 

2.4 Network architecture 

 

The ANN presented in this paper consists of three 

fully-connected layers. An activation function then 

performs this summation, and the result is passed on to 

the next layer. In the proposed system, the input layer 

and the two hidden layers use rectified linear units 

(ReLUs) as activation functions because of their fast 

convergence on large datasets [5]. In the last layer, we 

used the softmax activation function to quantify the 

probability belonging to each class. In addition, back-

propagation [6] using the Adam optimizer [7] adjusted 

the weights and bias to minimize the cross-entropy error. 

 

3. Results and discussion 

 

3.1 Network architecture 

 

In this study, the performance for radioisotope 

identification was evaluated by the accuracy, which was 

defined as the ratio of the total number of accurately 

evaluated spectra to the total number of evaluated 

spectra. Figure 5 shows the accuracy of the ANN’s 

calculation using the test sets. As shown in the figure, 

the proposed system had a high accuracy of 98.9% for 

the single radioisotope and 99.1% for the multi 

radioisotopes. Depending on the distance, it was 99%, 

99.4%, and 97.9% for each of 1, 5, and 10cm apart, 

showing that it decreased slightly in the 10cm apart. 

This may have been a result of incorrect calculation due 

to a decrease in the counts of channels by low detection 

efficiency, which resulted in an increase in uncertainty 

and an increase in the background effect. Looking at the 

class, the accuracy was reduced in class 5, 10 cm apart, 

and all the cases in which class 4 was confirmed to be 

wrong were calculated as class 1 (background) due to 

the low counts of 54Mn as shown in Figure 6 (a). 

However, it still had a high accuracy of 90.0%. For the 

reason mentioned earlier, some incorrectly calculated 

class 15 as class 9. As shown in Figure 6 (b), it is 

difficult to tell the difference when comparing the two 

spectra, but it could be classified as 93.0% accuracy. In 

addition, it showed 99.0% accuracy for the entire 1,440 

spectra of the test set by separating all the similar 

spectra difficult to distinguish the characteristics of the 

radioisotopes, like Figures 6 (c) and (d).  

 

 

Fig. 5. The accuracy that ANN predicted using test sets. (Left) 

the accuracy according to the class, (right) the accuracy 

according to the distance. 

In this study, voting procedures were developed to 

improve the identification accuracy, so training sets 

were organized through pretreatment processes. Figure 

7 shows the comparison of accuracy in the different 

extracted ranges of the spectrum. From these results, it 

appears that accuracy through the voting process is 

higher than that of each channel range. In addition, 

considering that there is a deviation in the accuracy of 
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the channel ranges, it may be able to increase the 

reliability of the results by determining the overall 

results of various channel ranges. In this figure, the 

accuracy tends to decrease when the extracted channel 

range moves to a high energy. This is because the 

Compton maximum or continuum, which shows the 

characteristic of radioisotopes, appears below 1 MeV in 

most cases due to the characteristic of plastic 

scintillators in which photoelectric absorption rarely 

occurs. As the extracted channel range moves to a high 

energy, the spectrum loses such information, so the 

accuracy may decrease. 

 

 

Fig. 6. An example of the test set that was correctly predicted 

by the ANN (10cm apart, 1 second). 

 

 

Fig. 7. The comparison of accuracy in the different extracted 

ranges of the spectrum and the accuracy through the voting 

procedures. 

When creating the test sets, we included 10 measured 

spectra by class. This was to prevent the ANN from 

recognizing the difference between the simulated 

spectra and the measured spectra at less than 0.3 MeV 

as a characteristic of the class. Figure 8 shows the result 

of evaluating the accuracy of the test set after excluding 

the 150 measured spectra in the training set and setting 

the rest of the training process to be the same. As shown 

in the figure, the accuracy decreased to 81.5%. Adding 

just 10 measured spectra per class made it possible to 

improve the accuracy by 17.5%. 

 

 

Fig. 8. The accuracy of the test set after excluding the 150 

measured spectra in the training set. 

3.2 Gain shift sensitivity performance 

 

To study further the identification performance 

though plastic gamma spectra shifted by calibration drift 

or temperature, we shifted the spectra to 36 keV for 

each high energy and low energy, based on the response 

function of the scintillator to 0.662 MeV, by adjusting 

the gain (each is referred to as a positive bias and a 

negative bias). For each spectrum for the positive bias 

and the negative bias, respectively, the test sets were 

created by measuring each of the 1,440 spectra in the 

same way as for the method of creating test sets 

described in Section 2.2. These test sets were evaluated 

by the trained ANN. Figure 10 shows that the accuracy 

of the negative bias was 97.8%, showing that the 

accuracy was hardly reduced. On the other hand, when 

the spectra were biased to a high energy, the accuracy 

decreased to 85.0%. This is because increasing the gain 

not only shifts the spectra to a high energy, but also 

broadens the Compton continuum in the same spectral 

range, as shown in Figure 9. This means that the 

accuracy might be reduced due to the fact that the ANN 

has lacked training on broader spectra. 

 

 

Fig. 9. Measurement spectra shifted by 36 keV for each high 

energy and low energy by adjusting the gain, based on the 

response function of the scintillator to 0.662 MeV. 

 

Fig. 10. The comparison of identification accuracy for the 

positive bias and negative bias. 
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3.3 Minimum identifiable activity 

 

The question then arises: how can small activities of 

the radioisotopes be identified with the proposed 

algorithm? This may be related to the minimum 

identifiable activity (MIA) proposed by ORTEC [8]. In 

this study, we defined the “count quality factor” C as in 

Equation below to calculate the MIA with less than 5% 

of the FP and FN for the radioisotope where G 

represents the gross counts in a spectrum ranging from 

40 to 1,000 channels, B is the number of background 

counts in the same region, and σN is the uncertainty of 

G-B.  

 
C was calculated by measuring each radioisotope and 

background 200 times for 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 

1, 2, 3, 5, and 1 seconds at 10cm apart. The FP showed 

a result of less than 5% for all calculated C ranges, but 

the FN becomes 5% or less at the values of C more than 

38, 39, 142, and 30 in the radioisotopes of 22Na, 137Cs, 

60Co, and 54Mn, respectively. TableⅠ shows the number 

of total net counts in the detector and the MIA in which 

C, FP, and FN are less than 5% by the radioisotope.  

 

 

Fig. 11. FN variation according to changes in the value of C 

by class. 

Table I. Total net counts in the detector and the calculated 

MIA in which FP and FN are less than 5% by the radioisotope. 

Class MIA (μ Ci) Total net counts (#) 

Class2 (22Na) 6.4 1,538±40 

Class3 (137Cs) 6.7 508±22 

Class4 (60Co) 46.2 8,247±85 

Class5 (54Mn) 12.4 1,054±33 

 

 

Fig. 12. Measured spectrum corresponding to the MIA by 

class. 

3. Results and discussion 

 

Previous studies were limited to identifying a single 

radioisotope because of the low photoelectric 

absorption and poor resolution of plastic scintillators, so 

no studies have been done to classify multi 

radioisotopes. However, we were able to focus on 

identifying multi radioisotopes as well as a single 

radioisotope by developing the ANN-based algorithm. It 

used some of the measured spectra during training as 

well as voting procedures to increase the accuracy of the 

results. In addition, the ANN was trained by extracting 

different channel ranges of spectra to improve the 

accuracy and reliability of the results even if the gain 

shift would occur in the spectra. we achieved an 

accuracy of 99.0% by applying the  algorithm proposed 

in this study. This high accuracy was similar for the 

negative bias but was reduced to 85.0% for the positive 

bias. It is possible to identify the radioisotopes with less 

than 5% of the FP and FN even in the spectra with a 

high uncertainty due to a short spectral acquisition time. 
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