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1. Introduction 

 
The Kyoto University Critical Assembly (KUCA) is a 

reactor experiment facility in Kyoto University 
Research Reactor Institute operated with 0 power 
condition. For a future reactor experiment, the low-
enriched uranium (LEU) has been considered as a next-
generation fuel in the KUCA core [1]. U10Mo enriched 
to 19.3 w/o is a candidate for the LEU fuel. For the 
effective core experiments, the combination of the fuels 
and moderator plates should be optimized for each 
experimental purpose as well as reaching the criticality. 
Generally, these cores have been designed by human 
experiences; therefore, it requires huge human resources 
and times for design each core. Also, it is considerably 
difficult to deduct some innovative designs based on the 
human knowledges because there are lots of variables in 
the core design.  

The artificial neural network (ANN) [2] can be 
utilized for the optimized design of the core. Generally, 
ANN in the field of nuclear engineering has been used 
for designing core reloading patterns, radiation 
shielding, safety system, and data analyses [3-5]. 
Nevertheless, it has a limitation in using ANN for newly 
designed reactor core: a huge computation time is 
required for obtaining big data because the core has lots 
of variables and the transport simulation of the reactor 
core needs large computational cost. As a first step for 
developing an automatic design method of the reactor 
core, in this study, a program based on ANN for 
designing the fuel assembly is developed to obtain 
highest multiplication factor with using small number of 
the fuel plates.  

 
2. Methods and Results 

 
2.1 Target Fuel Assembly  

 
The configuration of the target assembly is shown in 

Fig. 1. The fuel and moderator plates surrounded by an 
Al-based sheath are loaded in the fuel region as shown 
Fig. 1 (a). The reflectors are axially arranged with 
sandwiching the fuel region (Fig. 1 (b)). In the assembly 
model, infinite arrangement of the assembly on 
horizontal direction is assumed by using the reflective 
boundary condition as shown in Fig. 1. The height of 
the fuel region is 49.8475 cm, and the length of each 

axial reflector is 500.0 mm. The size of each of the plate 
is 5.08 cm x 5.08 cm x 0.3175 cm, and 157 plates can 
be, therefore, axially loaded in the fuel region. For 
loading the plates in the fuel region, 5 kinds of materials, 
which are U10Mo (Fuel), graphite (Gr), beryllium (Be), 
polyethylene (PE) and lead (Pb), were selected. In the 
reflector region, all materials excepting U10Mo can be 
used. The details of the material composition used in 
this study are given in Table I.  
 

 
(a) Horizontal View 

 

 
(b) Axial view 

Fig. 1. Overview of the target assembly model. 
 
Table I: Details of material composition in target assembly [1] 

Material Isotope Atomic Density 
[1024 #/cm3] 

U10Mo 
(Homogenized 
by Al cladding) 

Mo-92 8.3664E-04 
Mo-94 5.3283E-04 
Mo-95 9.2680E-04 
Mo-96 9.8126E-04 
Mo-97 5.6767E-04 
Mo-98 1.4491E-03 

Mo-100 5.9013E-04 
U-234 5.6445E-05 
U-235 4.2694E-03 
U-236 9.9017E-05 
U-238 1.6975E-02 
Al-27 2.7070E-02 
B-10 2.6889E-07 
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B-11 1.0823E-06 

Pb 

82204 4.66819E-04 
82206 8.03596E-03 
82207 7.36908E-03 
82208 1.74724E-02 

Gr 6000 8.64182E-02 

PE 1001 7.77938E-02 
6000 3.95860E-02 

Al 13027 6.00385E-02 
Be 4009 8.64182E-02 

 

2.2 Algorithm for Automatic Design of Fuel Assembly  
 

The main purpose in this study is to deduct a design 
of the fuel assembly using an automatic design program 
based on ANN for obtaining a maximum multiplication 
factor. Here, ANN for obtaining multiplication factor 
with various plate and reflector combinations is 
constructed as shown in Fig. 2. When one material is 
located in a region, a neuron in the input layer linked by 
the material and the region is activate to 1 as well as 
deactivating the other neurons linked by the region to 0. 
Also, the result of the multiplication factor estimated by 
a MCNP simulation is used as an output of ANN. These 
sets of the input and output are used as big data for the 
machine learning of ANN. The problem to directly 
utilize ANN for the reactor design is that the big data 
does not exist for a new type reactor. Also, the number 
of cases for the combinations of the plates and reflectors 
are about 5158 #. These numerous cases cause 
difficulties for conducting the machine learning of ANN, 
and extremely large computation times are required to 
obtain confidential results.  

 

 
Fig. 2. Feedforward neural network for design of fuel 

assembly [2]. 
 
To solve the problems, an algorithm for conducting 

the automatic design and the machine learning was 

proposed in this study, as shown in Fig. 3. In this 
algorithm, specific rules are used to effectively perform 
the machine learning of ANN: 1) the center plate in the 
fuel region is fixed to the U10Mo fuel plate (to avoid 0 
fuel plate in the fuel region); 2) the plates excepting the 
center plate is axially filled by the repetition of unit cells 
which includes 4, 5, 6 and 7 sub-plates; 3) non-fuel 
plates contacted to the reflector are replaced to the 
reflector material until a fuel plate appears; 4) the plates 
are symmetrically arranged on axial direction; 5) the 
Monte Carlo stochastic uncertainty (standard deviation 
of the multiplication factor) should be under 0.002. 
With the specific rules, the machine learning, the design 
of fuel assembly with ANN and the generation of big 
data are automatically conducted with the algorithm.  

 

 
Fig. 3. Overview of automatic design algorithm of the fuel 

assembly including ANN and machine learning. 
 

The detailed algorithm in this program is given as 
follows:  

1) At the beginning of the program, 50 initial cases 
are generated with well-known combinations of 
the fuels and moderators such as repetition of one 
fuel and one moderator;  

2) Using the cases generated in the previous step, 
MCNP inputs are automatically generated and the 
multiplication factors are estimated by the 
MCNP6.1 code with ENDF VIII.0 cross section 
library [6]. For satisfying the uncertainty criterion, 
the number of particles per cycle, skip cycle and 
total cycle are set to 1,000, 20 and 120, 
respectively (the fission source convergences with 
the skip cycle are checked by the Shannon entropy 
method [7]);  

3) The multiplication factors estimated by the MCNP 
code are automatically extracted, and the big data 
is updated with the inputs and outputs obtained in 
the previous step; 

4) Using the big data, the machine learning is 
conducted with the back-propagation algorithm [2].  



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 17-18, 2018 

 
 

5) An optimized plate pattern is designed by ANN to 
reach a highest multiplication factor with changing 
materials in each plate and reflector.  

6) If the fuel assembly designed by ANN in a current 
step is not equal to that designed in the previous 
step, 20 new cases are generated by using the 
optimized design and genetic algorithm [2]. 

7) The number of cases used in 6) is changed to 50. 
This process is conducted for confirming the 
accuracy of ANN for the optimized design of the 
fuel assembly. 

8) The optimized designs are extracted and 
converted to the MCNP Input. 

 
2.3 Results and Analysis 

 
With the algorithm described in Sec. 2.2, an 

automatic assembly design program (AADP) was 
developed with the C++ program language; fuel 
assemblies using the program were automatically 
designed as shown in Fig. 4. Also, the multiplication 
factor estimated by the MCNP code and AADP are 
given in Table II. The total computational time with 
single CPU was about 2 days, demonstrating that it has 
a reasonable efficiency comparing to the human efforts 
for deducing the assembly design. For all the fuel 
assemblies designed by AADP, Be reflector was 
selected, which can lead highest multiplication factor. 
Also, for all the optimized designs, it was determined 
that one fuel plate was only loaded in each unit cell. 
Generally, at KUCA, multiplication factors from fuel 
assemblies designed by human experiments are about 
1.00 - 1.55 with the condition of the fuel assembly. 
With comparing the previous fuel assemblies used in the 
other experiments [1,8], the fuel assemblies designed by 
AADP showed a good performance for increasing the 
multiplication factor. In addition, the number of fuel 
plates in the fuel assemblies are relatively small than 
previous fuel assemblies [1,8], and hence, it can give 
expandability for KUCA experiments that lots of fuel 
plates are required.  

 

   
(a) 4 plates in unit cell        (b) 5 plates in unit cell 
 

 
(a) 6 plates in unit cell        (b) 7 plates in unit cell 

Fig. 4. Fuel assemblies designed by AADP. 

Table II: Multiplication factors with the fuel assemblies 
designed by AADP 

Unit Cell # of Fuel 
Plates 

Estimation 
Method kinf 

4 plates 39 MCNP 1.62958* 
AADP 1.62866 

5 plates 31 MCNP 1.64169* 
AADP 1.64171 

6 plates 27 MCNP 1.64464* 
AADP 1.64938 

7 plates 23 MCNP 1.64872* 
AADP 1.65315 

 
3. Conclusions 

 
In this study, an automatic design method of the fuel 

assembly at KUCA using ANN was proposed for the 
U10Mo LEU fuel. To efficiently conduct the machine 
learning of ANN without previous big data, a method 
for conducting the machine learning with automatically 
generating and updating the big data was developed. 
With the methods based on ANN, the design of fuel 
assemblies was performed to obtain maximum 
multiplication factor. The fuel assemblies designed by 
the proposed method considerably showed high 
performance for increasing the multiplication factor 
comparing to the fuel assemblies used in previous 
studies. As a future work of this study, a core design 
will be conducted by developing the automatic design 
method based on the proposed strategy. 
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