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1. Introduction 

 
Graphic Processing Units (GPUs) are increasingly 

becoming the main means of calculation in the scientific 

fields, due to its cost-effectiveness and massive vector 

processing capability. The potential of employing GPUs 

in the reactor physics calculations is also being explored 

by the nTRACER [1] developer group at Seoul National 

University. nTRACER is now one of the members of the 

high performance computing consortium in Korea, and 

the whole code is being renovated for the application to 

the heterogeneous high performance computers as a 4-

year research project. 

nTRACER uses the method of characteristics (MOC) 

coupled with the coarse mesh finite difference (CMFD) 

acceleration for solving the transport equation. So far 

the focus of optimization was on the MOC calculation 

since the majority of the calculation time is spent on the 

ray tracing calculation. As the result, we have recently 

observed a promising result on the feasibility of GPU 

acceleration of the MOC calculation [2]. Afterwards the 

optimization of the CMFD acceleration became critical. 

Therefore, performance of several linear system solvers 

on GPU under the CMFD framework are studied in this 

work. Especially, the numerical performance under the 

single precision arithmetic as well as the feasibility of 

massive parallelization are examined. 

 

2. Theoretical Backgrounds 

 

2.1 CMFD Power Iteration 

 

Generalized CMFD eigenvalue problem has the form: 

1

effk
MΦ FΦ  (1) 

where M  is the migration matrix which represents the 

migration of neutrons through energy and space due to 

scattering and diffusion. F  is the production matrix that 

incorporates the effect of neutron production caused by 

fission. The migration matrix is ordered such that dense 

block matrices which incorporate the scattering terms 

are laid along the diagonal, as depicted in Figure 1. 

The scaled power iteration of Eq. (1) is formulated as 

follows: 
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where n  is the power iteration index. However, because 

the direct inversion of M  is expensive, it is replaced by 

solving the linear system using iterative methods: 
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where ψ  is the fission source vector and χ  is the fission 

spectrum matrix. 
 

 

Figure 1. Migration matrix structure. 

The solution of this linear system does not require full 

convergence since the fission source is still inaccurate. 

Such unnecessity of full convergence makes the linear 

system solution in the CMFD problem differ from other 

ordinary linear system problems. 

Once the linear system is solved, the multiplication 

factor is updated using: 
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2.2 Linear System Solution Methods 

 

2.2.1 Bi-Conjugate Gradient Stabilized (BiCGSTAB) 

 
BiCGSTAB is one of the most widely employed Krylov 

method for solving linear systems. The Krylov methods 

are normally augmented by a preconditioning scheme, 

which accelerates the convergence by improving the 

condition number of the matrix. The algorithm of the 

preconditioned BiCGSTAB is described in Figure 2, in 

which the matrix K  is the preconditioner. 

In this paper, Incomplete LU (ILU) preconditioner 

will be studied. The ILU preconditioner preserves the 

sparsity pattern of the original matrix in the factorized 

matrices. The inversion of the preconditioner then can 
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be done by the LU solve with a small computation load. 

However, the forward and the backward substitution are 

basically serial, so the parallel performance may be poor. 
 

 

2.2.2 Block Successive Over-relaxation (BSOR) 

 

SOR is a famous conventional stationary method for 

solving linear systems. For the parallelization of SOR, 

red-black ordering strategy is used. The structure of the 

red-black ordered CMFD linear system can be found in 

Figure 3 and can be expressed as: 
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Figure 3. Red-black ordered CMFD linear system structure. 

However, the existence of the scattering terms prevents 

the point SOR scheme from parallelization. Hence, the 

block SOR scheme is introduced: 
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Still the direct inversion of the diagonal blocks is not 

preferable, so the source iteration is employed and the 

up-scattering terms are removed from the linear system 

so that the diagonal blocks have lower triangular shape, 

as illustrated in Figure 3. Then, the diagonal blocks can 

be inverted readily using the forward substitution. 

SOR requires an estimate of the spectral radius GS  

of the Gauss-Seidel iteration matrix. Hence, a dummy 

Gauss-Seidel step should be carried out initially. Once it 

is known, the optimal relaxation factor is found by the 

Young’s formula: 

2
.

1 1 GS





 

 (7) 

And the number of SOR iterations n  per outer iteration 

is pre-determined using 

log

log SOR
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where   is the desired error reduction ratio, and 

1SOR    (9) 

 

2.2.3 Alternating Anderson-Jacobi (AAJ) 

 
Jacobi iteration is the simplest form of the fixed-point 

iteration. In the Jacobi scheme, the matrix A  of a linear 

system Ax = b  is split as 

A = D + R  (10) 

where D  is the diagonal matrix and R  consists of the 

off-diagonals. Now, define the residual as 

1( ) ( ) .f x = D b - Rx - x
  (11) 

However, the Jacobi scheme typically suffers from slow 

convergence, so the Anderson extrapolation technique 

was introduced by P. Pratapa et al [4]. In the Anderson-

Jacobi scheme, the fixed-point iteration is generalized to 

1 ( )x = x f xk k k   (12) 

where kx  denotes the weighted average of the previous 

1m   iterates 
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The weighting factors 1[ ]Tk m    are chosen so 

as to minimize the 2l -norm of the residual 

( ) ( )F F F f x
T T
k k k k k   (14) 

where 
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 (15) 

Then, the update formula of Eq. (12) can be written as: 

1
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Figure 2. Preconditioned BiCGSTAB algorithm. 
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1 1( ) ( ) .X x x x xk k m k m k k   
      (17) 

This extrapolation replaces the ordinary Jacobi scheme 

every p times of iteration, and this alternation process is 

repeated until the relative residual reduction reaches  . 

The calculation of F F
T
k k  is sensitive to the round-off 

error. Therefore, it should be computed with the double 

precision arithmetic, which is the main drawback of this 

method. Still, the extrapolation does not have to be done 

frequently and the dimension of F F
T
k k  is restricted; our 

sensitivity test told us that setting m = p = 10 is enough. 

Thus, AAJ still holds an advantage over other methods 

that the majority of the calculation can be carried out 

with the naturally parallelizable Jacobi scheme. 

 

2.3 Iterative Refinement 

 

Even the commercial GPUs have far larger single 

precision computing power than CPUs. However, it is 

discouraged to solve the CMFD problem directly by the 

single precision arithmetic, since the achievable source 

residual level has a limited lower bound imposed by the 

round-off error. Therefore, to solve the CMFD problem 

effectively on GPUs exploiting the single precision, the 

iterative refinement technique is introduced. It allows to 

use the single precision arithmetic for the linear system 

solver while still ensuring the double precision accuracy. 

The procedure is explained in Figure 4 in which the 

subscript indicates the floating point precision. 
 

1. Compute residual: (8) (8) (8) (8)r b A x   

2. Solve for correction: (4) (4) (4)A d r  

3. Add correction: 
*
(8) (8) (8)x x d   

Figure 4. Iterative refinement technique procedure. 

3. Results and Discussion 

 

The implementation of the solvers was done using the 

basic routines provided by CUBLAS and CUSPARSE 

libraries, to ensure a high level of optimization. All of 

the sparse matrices were saved in the CSR format to use 

the libraries, even though a specific saving format may 

be more efficient for highly structured matrices such as 

the CMFD matrix [4]; however, the penalty of using the 

general sparse format applies to all solvers commonly, 

so it does not affect the fairness of the comparison. 

The VERA problem 5A-2D [5] was chosen as the test 

problem. Its configuration is illustrated in Figure 5. The 

number of unknowns of this problem is 879,511 (18,713 

pins   47 energy groups) and the number of nonzero is 

26,182,017. It is effectively the largest dimension that a 

single device has to handle in the applications, because 

the 2D/1D method parallelizes the problem into planes. 

Table 1 shows the performances of the linear system 

solvers. Three inner iteration tolerances were tested: 0.1, 

0.05, and 0.01. Each line in the table corresponds to 

each tolerance. The CMFD outer iteration exits when 

the relative source residual reduction reaches 0.1. For 

the MOC solver, P1 scattering was used. The number of 

outers indicates the CMFD outer iteration count, and the 

Ax = b time represents the total time spent for the solver, 

including the refinement step. For AAJ, 0   was used 

so that a few terms are cancelled out, because according 

to our sensitivity tests, giving   a nonzero value did 

not result in a meaningful convergence enhancement. 

For the GPU, GeForce GTX 1070 was used. 
 

 

Figure 5. VERA problem 5A-2D configuration [5]. 

Table 1. Performance of the solvers w/o group condensing. 

Description 
BiCGSTAB 

BSOR AAJ 
ILU None 

keff 1.00270 

# of MOCs 7 

# of Outers 

283 

284 

276 

288 

279 

279 

955 

931 

847 

310 

273 

277 

Ax = b Time (s) 

38.2 

50.4 

59.8 

62.1 

66.1 

83.5 

42.7 

50.4 

65.8 

59.5 

62.4 

83.8 
 

From Table 1, following interpretations can be made: 

1. Even though the triangular solver is not effective, 

the unpreconditioned BiCGSTAB consumes much 

more time than the ILU preconditioned BiCGSTAB 

due to increased inner iterations. 

2. The reason for significantly large number of outer 

iterations of BSOR compared to other solvers is the 

up-scattering source iteration. Increase of the outer 

iterations results in not only more inner iterations 

but also more iterative refinement steps which are 

performed by the double precision arithmetic. 

3. Poor performance of AAJ is contributed by large 

number of inner iterations and the extrapolation 

cost. Even with the extrapolation, still dozens of 

Jacobi iterations are required in AAJ. 

With group condensation, however, the performance 

of the solvers can be improved. The group condensation 

accelerates the convergence of the global fission source 

distribution in a multigrid manner – by collapsing the 

multi-group problem into a few-group problem. In this 

paper, two-group condensation was employed. The two-
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group problem does not include up-scattering. 

Table 2 shows the performance of the solvers with 

the condensed two-group CMFD. The entire iteration 

procedure is as follows: 

1. Do 5 initial multi-group CMFD iterations. 

2. Do two-group CMFD iterations until the relative 

source residual reduction is smaller than 0.1. 

3. Do multi-group CMFD iterations until the relative 

source residual reduction is smaller than 0.1. 

Table 2. Performance of the solvers w/ group condensing. 

Description 
BiCGSTAB 

BSOR AAJ 
ILU None 

keff 1.00270 

# of MOCs 7 

# of MG Outers 

56 

56 

56 

57 

56 

56 

59 

60 

56 

56 

56 

56 

# of 2G Outers 

446 

444 

441 

453 

442 

442 

852 

712 

509 

483 

457 

440 

Ax = b Time (s) 

24.3 

30.5 

46.9 

19.9 

22.8 

28.9 

5.2 

5.7 

6.7 

14.9 

20.0 

29.8 
 

The performance of the linear system solvers after 

incorporating the group condensation differ largely from 

the multi-group stand-alone result. Such differences can 

be explained as follows: 

1. The group condensation compensated the increase 

of outer iterations in BSOR from the up-scattering 

source iteration. It reduced the number of multi-

group outer iterations to the same level with other 

solvers, making BSOR the most efficient solver. 

2. Total computation time of the ILU preconditioned 

BiCGSTAB is not reduced as much as other solvers, 

which pushes the ILU preconditioned BiCGSTAB 

to the least efficient solver. It is due to the overhead 

imposed by the triangular solver employed to solve 

the preconditioner of the group-condensed system. 

3. BSOR also employs a lower triangular solver, but 

the bottleneck is not observed. It is because of the 

structure of the triangular matrices. The triangular 

matrix of BSOR is composed of many independent 

block matrices (scattering blocks), which allows 

high degree of parallelization. On the other hand, 

the ILU preconditioner matrices contain the global 

spatial coupling terms which deteriorate parallelity. 

Same applies to the multi-group problem as well. 

 

4. Conclusion 

 

Several stationary and Krylov linear system solution 

methods were implemented employing CUDA, and the 

performance was examined under the CMFD framework.  

Following missions were imposed on the solvers: 1. 

High parallel efficiency on the GPU architectures, 2. 

Numerical stability under the single precision arithmetic 

and iterative refinement, and 3. Effectiveness under the 

CMFD power iteration and group-condensation. And it 

appeared that BSOR is the most amenable of the solvers 

to the GPU acceleration of the CMFD power iteration. 

Especially, the group-condensation compensated the up-

scattering source iteration of BSOR. Meanwhile, ILU 

preconditioned BiCGSTAB could not solve the small 

linear systems occurring from the group condensation 

effectively, resulting in even worse performance than 

the unpreconditioned version. 

Nonetheless, preconditioned Krylov methods are still 

preferred in that it can solve various linear systems with 

a wide range of numerical properties. The utilization of 

unpreconditioned BiCGSTAB is discouraged because 

of its poor convergence behavior. Also, the convergence 

of stationary methods is only assured when the system is 

diagonally dominant. However, the diagonal dominance 

may be broken in the CMFD linear system due to the 

existence of the correction factors. Therefore, use of 

highly parallelizable preconditioners, such as the Sparse 

Approximate Inverse (SPAI) preconditioner, should be 

investigated. Also, the convergence property of BSOR 

should be examined with more various type of problems, 

including three-dimensional problems that require axial 

calculations. 

Furthermore, this research limits the scope on the use 

of a single device. However, to retain the scalability to 

large-scale parallel machines, performance of the linear 

system solvers should be examined under the presence 

of communication as well. 
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