
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

Performance Comparison of Linear System Solvers for CMFD Acceleration

on GPU Architectures

Namjae Choi, Junsu Kang, Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

Graphic Processing Units (GPUs) are increasingly

becoming the main means of calculation in the scientific

fields, due to its cost-effectiveness and massive vector

processing capability. The potential of employing GPUs

in the reactor physics calculations is also being explored

by the nTRACER [1] developer group at Seoul National

University. nTRACER is now one of the members of the

high performance computing consortium in Korea, and

the whole code is being renovated for the application to

the heterogeneous high performance computers as a 4-

year research project.

nTRACER uses the method of characteristics (MOC)

coupled with the coarse mesh finite difference (CMFD)

acceleration for solving the transport equation. So far

the focus of optimization was on the MOC calculation

since the majority of the calculation time is spent on the

ray tracing calculation. As the result, we have recently

observed a promising result on the feasibility of GPU

acceleration of the MOC calculation [2]. Afterwards the

optimization of the CMFD acceleration became critical.

Therefore, performance of several linear system solvers

on GPU under the CMFD framework are studied in this

work. Especially, the numerical performance under the

single precision arithmetic as well as the feasibility of

massive parallelization are examined.

2. Theoretical Backgrounds

2.1 CMFD Power Iteration

Generalized CMFD eigenvalue problem has the form:

1

effk
MΦ FΦ (1)

where M is the migration matrix which represents the

migration of neutrons through energy and space due to

scattering and diffusion. F is the production matrix that

incorporates the effect of neutron production caused by

fission. The migration matrix is ordered such that dense

block matrices which incorporate the scattering terms

are laid along the diagonal, as depicted in Figure 1.

The scaled power iteration of Eq. (1) is formulated as

follows:

() 1 (1)

(1)

1
Φ M FΦ

n n

n
effk

 (2)

where n is the power iteration index. However, because

the direct inversion of M is expensive, it is replaced by

solving the linear system using iterative methods:

() (1)

(1)

1
.MΦ χψ

n n

n
effk

 (3)

where ψ is the fission source vector and χ is the fission

spectrum matrix.

Figure 1. Migration matrix structure.

The solution of this linear system does not require full

convergence since the fission source is still inaccurate.

Such unnecessity of full convergence makes the linear

system solution in the CMFD problem differ from other

ordinary linear system problems.

Once the linear system is solved, the multiplication

factor is updated using:

() ()

() (1)

() (1)

,

,

ψ ψ

ψ ψ

n n

n n
eff eff n n

k k

 (4)

2.2 Linear System Solution Methods

2.2.1 Bi-Conjugate Gradient Stabilized (BiCGSTAB)

BiCGSTAB is one of the most widely employed Krylov

method for solving linear systems. The Krylov methods

are normally augmented by a preconditioning scheme,

which accelerates the convergence by improving the

condition number of the matrix. The algorithm of the

preconditioned BiCGSTAB is described in Figure 2, in

which the matrix K is the preconditioner.

In this paper, Incomplete LU (ILU) preconditioner

will be studied. The ILU preconditioner preserves the

sparsity pattern of the original matrix in the factorized

matrices. The inversion of the preconditioner then can

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

be done by the LU solve with a small computation load.

However, the forward and the backward substitution are

basically serial, so the parallel performance may be poor.

2.2.2 Block Successive Over-relaxation (BSOR)

SOR is a famous conventional stationary method for

solving linear systems. For the parallelization of SOR,

red-black ordering strategy is used. The structure of the

red-black ordered CMFD linear system can be found in

Figure 3 and can be expressed as:

D M Φ Q

M D Φ Q

R R R R

B B B B

 (5)

Figure 3. Red-black ordered CMFD linear system structure.

However, the existence of the scattering terms prevents

the point SOR scheme from parallelization. Hence, the

block SOR scheme is introduced:

(1) (1) (1)() 1

(1) (1)() ()1

() (1)

() (1)

Φ D Q M Φ Φ

Φ D Q M Φ Φ

n n nn
R RR R B R

n nn n
B BB B R B

 (6)

Still the direct inversion of the diagonal blocks is not

preferable, so the source iteration is employed and the

up-scattering terms are removed from the linear system

so that the diagonal blocks have lower triangular shape,

as illustrated in Figure 3. Then, the diagonal blocks can

be inverted readily using the forward substitution.

SOR requires an estimate of the spectral radius GS

of the Gauss-Seidel iteration matrix. Hence, a dummy

Gauss-Seidel step should be carried out initially. Once it

is known, the optimal relaxation factor is found by the

Young’s formula:

2
.

1 1 GS

 (7)

And the number of SOR iterations n per outer iteration

is pre-determined using

log

log SOR

n

 (8)

where is the desired error reduction ratio, and

1SOR (9)

2.2.3 Alternating Anderson-Jacobi (AAJ)

Jacobi iteration is the simplest form of the fixed-point

iteration. In the Jacobi scheme, the matrix A of a linear

system Ax = b is split as

A = D + R (10)

where D is the diagonal matrix and R consists of the

off-diagonals. Now, define the residual as

1() () .f x = D b - Rx - x
 (11)

However, the Jacobi scheme typically suffers from slow

convergence, so the Anderson extrapolation technique

was introduced by P. Pratapa et al [4]. In the Anderson-

Jacobi scheme, the fixed-point iteration is generalized to

1 ()x = x f xk k k (12)

where kx denotes the weighted average of the previous

1m iterates

1
1

().
m

k k j k m j k m j
j

 x x x x (13)

The weighting factors 1[]Tk m are chosen so

as to minimize the 2l -norm of the residual

() ()F F F f x
T T
k k k k k (14)

where

 1 1() () () () .F f x f x f x f xk k m k m k k

 (15)

Then, the update formula of Eq. (12) can be written as:

1
1 () ()() ()x = x f x X F F F F f x

T T
k k k k k k k k k
 (16)

where

1.
0 0 r b Ax

2.
0 0 1

3.
0 0 0 v p

4. For = 1, 2, 3, ...i

4.1 0 1(,)i i r r

4.2 1 1(/)(/)i i i

4.3 1 1 1 1()i i i i i p r p v

4.4
1

i

y K p

4.5
i v Ay

4.6
0/ (,)i i r v

4.7 1i h x y

4.8 1i s r y

4.9
1

z K s

4.10 t Az

4.11 (,) / (,)i t s t t

4.12
i i x h z

4.13
i i r s t

4.14 If
0i r r , stop the iteration

Figure 2. Preconditioned BiCGSTAB algorithm.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

1 1() () .X x x x xk k m k m k k
 (17)

This extrapolation replaces the ordinary Jacobi scheme

every p times of iteration, and this alternation process is

repeated until the relative residual reduction reaches .

The calculation of F F
T
k k is sensitive to the round-off

error. Therefore, it should be computed with the double

precision arithmetic, which is the main drawback of this

method. Still, the extrapolation does not have to be done

frequently and the dimension of F F
T
k k is restricted; our

sensitivity test told us that setting m = p = 10 is enough.

Thus, AAJ still holds an advantage over other methods

that the majority of the calculation can be carried out

with the naturally parallelizable Jacobi scheme.

2.3 Iterative Refinement

Even the commercial GPUs have far larger single

precision computing power than CPUs. However, it is

discouraged to solve the CMFD problem directly by the

single precision arithmetic, since the achievable source

residual level has a limited lower bound imposed by the

round-off error. Therefore, to solve the CMFD problem

effectively on GPUs exploiting the single precision, the

iterative refinement technique is introduced. It allows to

use the single precision arithmetic for the linear system

solver while still ensuring the double precision accuracy.

The procedure is explained in Figure 4 in which the

subscript indicates the floating point precision.

1. Compute residual: (8) (8) (8) (8)r b A x

2. Solve for correction: (4) (4) (4)A d r

3. Add correction:
*
(8) (8) (8)x x d

Figure 4. Iterative refinement technique procedure.

3. Results and Discussion

The implementation of the solvers was done using the

basic routines provided by CUBLAS and CUSPARSE

libraries, to ensure a high level of optimization. All of

the sparse matrices were saved in the CSR format to use

the libraries, even though a specific saving format may

be more efficient for highly structured matrices such as

the CMFD matrix [4]; however, the penalty of using the

general sparse format applies to all solvers commonly,

so it does not affect the fairness of the comparison.

The VERA problem 5A-2D [5] was chosen as the test

problem. Its configuration is illustrated in Figure 5. The

number of unknowns of this problem is 879,511 (18,713

pins 47 energy groups) and the number of nonzero is

26,182,017. It is effectively the largest dimension that a

single device has to handle in the applications, because

the 2D/1D method parallelizes the problem into planes.

Table 1 shows the performances of the linear system

solvers. Three inner iteration tolerances were tested: 0.1,

0.05, and 0.01. Each line in the table corresponds to

each tolerance. The CMFD outer iteration exits when

the relative source residual reduction reaches 0.1. For

the MOC solver, P1 scattering was used. The number of

outers indicates the CMFD outer iteration count, and the

Ax = b time represents the total time spent for the solver,

including the refinement step. For AAJ, 0 was used

so that a few terms are cancelled out, because according

to our sensitivity tests, giving a nonzero value did

not result in a meaningful convergence enhancement.

For the GPU, GeForce GTX 1070 was used.

Figure 5. VERA problem 5A-2D configuration [5].

Table 1. Performance of the solvers w/o group condensing.

Description
BiCGSTAB

BSOR AAJ
ILU None

keff 1.00270

of MOCs 7

of Outers

283

284

276

288

279

279

955

931

847

310

273

277

Ax = b Time (s)

38.2

50.4

59.8

62.1

66.1

83.5

42.7

50.4

65.8

59.5

62.4

83.8

From Table 1, following interpretations can be made:

1. Even though the triangular solver is not effective,

the unpreconditioned BiCGSTAB consumes much

more time than the ILU preconditioned BiCGSTAB

due to increased inner iterations.

2. The reason for significantly large number of outer

iterations of BSOR compared to other solvers is the

up-scattering source iteration. Increase of the outer

iterations results in not only more inner iterations

but also more iterative refinement steps which are

performed by the double precision arithmetic.

3. Poor performance of AAJ is contributed by large

number of inner iterations and the extrapolation

cost. Even with the extrapolation, still dozens of

Jacobi iterations are required in AAJ.

With group condensation, however, the performance

of the solvers can be improved. The group condensation

accelerates the convergence of the global fission source

distribution in a multigrid manner – by collapsing the

multi-group problem into a few-group problem. In this

paper, two-group condensation was employed. The two-

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 17-18, 2018

group problem does not include up-scattering.

Table 2 shows the performance of the solvers with

the condensed two-group CMFD. The entire iteration

procedure is as follows:

1. Do 5 initial multi-group CMFD iterations.

2. Do two-group CMFD iterations until the relative

source residual reduction is smaller than 0.1.

3. Do multi-group CMFD iterations until the relative

source residual reduction is smaller than 0.1.

Table 2. Performance of the solvers w/ group condensing.

Description
BiCGSTAB

BSOR AAJ
ILU None

keff 1.00270

of MOCs 7

of MG Outers

56

56

56

57

56

56

59

60

56

56

56

56

of 2G Outers

446

444

441

453

442

442

852

712

509

483

457

440

Ax = b Time (s)

24.3

30.5

46.9

19.9

22.8

28.9

5.2

5.7

6.7

14.9

20.0

29.8

The performance of the linear system solvers after

incorporating the group condensation differ largely from

the multi-group stand-alone result. Such differences can

be explained as follows:

1. The group condensation compensated the increase

of outer iterations in BSOR from the up-scattering

source iteration. It reduced the number of multi-

group outer iterations to the same level with other

solvers, making BSOR the most efficient solver.

2. Total computation time of the ILU preconditioned

BiCGSTAB is not reduced as much as other solvers,

which pushes the ILU preconditioned BiCGSTAB

to the least efficient solver. It is due to the overhead

imposed by the triangular solver employed to solve

the preconditioner of the group-condensed system.

3. BSOR also employs a lower triangular solver, but

the bottleneck is not observed. It is because of the

structure of the triangular matrices. The triangular

matrix of BSOR is composed of many independent

block matrices (scattering blocks), which allows

high degree of parallelization. On the other hand,

the ILU preconditioner matrices contain the global

spatial coupling terms which deteriorate parallelity.

Same applies to the multi-group problem as well.

4. Conclusion

Several stationary and Krylov linear system solution

methods were implemented employing CUDA, and the

performance was examined under the CMFD framework.

Following missions were imposed on the solvers: 1.

High parallel efficiency on the GPU architectures, 2.

Numerical stability under the single precision arithmetic

and iterative refinement, and 3. Effectiveness under the

CMFD power iteration and group-condensation. And it

appeared that BSOR is the most amenable of the solvers

to the GPU acceleration of the CMFD power iteration.

Especially, the group-condensation compensated the up-

scattering source iteration of BSOR. Meanwhile, ILU

preconditioned BiCGSTAB could not solve the small

linear systems occurring from the group condensation

effectively, resulting in even worse performance than

the unpreconditioned version.

Nonetheless, preconditioned Krylov methods are still

preferred in that it can solve various linear systems with

a wide range of numerical properties. The utilization of

unpreconditioned BiCGSTAB is discouraged because

of its poor convergence behavior. Also, the convergence

of stationary methods is only assured when the system is

diagonally dominant. However, the diagonal dominance

may be broken in the CMFD linear system due to the

existence of the correction factors. Therefore, use of

highly parallelizable preconditioners, such as the Sparse

Approximate Inverse (SPAI) preconditioner, should be

investigated. Also, the convergence property of BSOR

should be examined with more various type of problems,

including three-dimensional problems that require axial

calculations.

Furthermore, this research limits the scope on the use

of a single device. However, to retain the scalability to

large-scale parallel machines, performance of the linear

system solvers should be examined under the presence

of communication as well.

ACKNOWLEDGEMENTS

This research is supported by National Research Foundation

of Korea (NRF) Grant No. 2016M3C4A7952631 (Realization

of Massive Parallel High Fidelity Virtual Reactor)

REFERENCES

[1] Y. S. Jung, C. B. Shim, C. H. Lim, H. G. Joo, “Practical

Numerical Reactor Employing Direct Whole Core Neutron

Transport and Subchannel Thermal/Hydraulics Solvers,”

Annals of Nuclear Energy, Vol. 62, pp. 357–374 (2013).

[2] N. J. Choi, J. S. Kang, H. G. Joo, “Massively Parallel

Method of Characteristics Neutron Transport Calculation with

Anisotropic Scattering Treatment on GPUs,” International

Conference on High Performance Computing in Asia-Pacific

Region, Tokyo, Japan, Jan 28–31 (2018).

[3] P. Pratapa, P. Suryanarayana, J. Pask, “Anderson

Acceleration of the Jacobi Iterative Method: An Efficient

Alternative to Krylov Methods for Large, Sparse Linear

Systems,” Journal of Computational Physics, Vol. 306, pp.

43–54 (2016).

[4] J. S. Kang, H. G. Joo, “GPU-based Parallel Krylov Linear

System Solvers for CMFD Calculation in nTRACER,”

Transactions of the Korean Nuclear Society Spring Meeting,

Jeju, Korea, May 17-18 (2018).

[5] A. T. Godfrey, “VERA Core Physics Benchmark

Progression Problem Specifications,” Rev. 4, CASL-U-2012-

0131-004 (2014).

