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1. Introduction 

 
The Compact-Fusion Neutron Source (C-FNS) is 

widely used in various industrial and research area such 

as neutron activation analysis, neutron radiography, 

neutron capture therapy, and so on [1-2]. Also, for 

easier and wider applications of C-FNS, a need for more 

compact and even portable design is being increased. 

To achieve a goal of C-FNS design considering its 

compactness, optimization of neutron and gamma 

shielding is essential.  

In this study, an optimized shielding design for 

deuterium-deuterium (D-D) C-FNS was performed 

based on the well-known MCNP6 code [3].  

 

2. Design Target and Model 

 

2.1 Design Target 

 

In many applications of the neutron source, usage of 

thermal neutron is more efficient than fast neutron while 

D-D C-FNS produce 2.5 MeV fast neutrons. Hence one 

of the design targets is a maximization of “thermal 

neutron flux level” by adopting appropriate neutron 

moderator.  

The other design target is a minimization of shielding 

and moderator size as mentioned in the introduction 

section.  

For worker dose limit, 5 Sv/hr is used according to 

the recommendation of ICRP-60.  

 

2.2 Approximated Model for Conceptual Design 

 

In this paper, the 2.5 MeV neutron from D-D fusion 

reaction is approximated as isotropic, and 1-D spherical 

model with 1011 n/sec source as shown in Fig. 1 is used.  

The neutron source is born at the center of the 

spherical model, and the target neutron flux region is 

assumed from r=4cm to r=5cm. Then this region is 

surrounded by a 50-cm-thickness moderator region and 

150-cm-thickness region.  
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Fig. 1. Approximated 1-D spherical model for conceptual 

design 

 

3. Moderator Analysis for 1011 n/sec Source 

 

3.1 Moderator material 

 

Figure 2 shows thermal (<0.1 eV) neutron fluxes at 

considered region for various moderator materials 

suggested in references [4] and [5]. Because of the Be-

9(n,2n)Be-8 reaction which has about 1.8 MeV 

threshold energy, beryllium shows the best thermal 

neutron flux. Since the source neutron energy is 2.5 

MeV, other materials which have higher threshold 

energy than 2.5 MeV in (n,2n) reaction did not show 

considerable moderation effect.  

Although the beryllium showed best results, the 

chemical property of the beryllium induces alternative 

difficulty in C-FNS design. Hence the polyethylene is 

selected as a moderator material.   
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Fig. 2. Thermal neutron fluxes for various moderators  
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3.2 Thickness of Moderator 

 

Figure 3 shows thermal (<0.1 eV) neutron fluxes at 

considered region according to the polyethylene 

moderator thickness. It is easy to find that 15 cm-

thickness polyethylene shows converged thermal 

neutron flux strength.  
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Fig. 3. Thermal neutron fluxes according to the thickness of 

the polyethylene moderator 

 

3. Shield Analysis for 1011 n/sec Source 

 

3.1 Shield Materials 

 

For shielding design model, 15 cm-thickness 

polyethylene moderator was adopted as concluded in 

the previous section. Figures 4 and 5 show neutron and 

photon dose rate distributions for various shield 

materials.  

It is interesting that the polyethylene shows best 

performance in neutron shielding and worst 

performance in photon shielding while the lead shows 

worst performance in neutron shielding and best 

performance in photon shielding (up to 100cm-shieidng-

thickness). Since photon (or gamma) is generated by the 

(n,) reaction, the worse performance in photon 

shielding is induced by the not-shielded-neutrons in lead 

shield case.  
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Fig. 4. Neutron dose rates for various shield materials 
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Fig. 5. Photon dose rates for various shield materials 

 

Consequently, we can choose the polyethylene as a 

neutron shield and the lead as a photon shield. Fig.6 

shows total dose rate of combined the polyethylene and 

the lead shields. In Fig. 6, remained region after 

polyethylene is filled by the lead shield.  

We can obtain that the smallest size of shield for 1011 

n/sec source case is a combination of 45cm-thickness 

polyethylene and 20cm-thickness lead.  
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Fig. 6. Total dose rates for combination of polyethylene and 

lead  

 

4. Shield Analysis for Various Source Strength 

 

Based on the previous results, we can derive required 

minimum shield thickness for various D-D source 

strengths as shown in Fig. 6. It is noted that the 15cm-

thickness moderator is still considered inside of shield.  
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Fig. 6. Minimum shield thickness for various D-D neutron 

sources 

 

3. Conclusions 

 

In this paper, optimized moderator and shield design 

was suggested based on a simple 1-D spherical model. 

The 15cm-thickness polyethylene moderator was 

suggested with 45cm-thickness polyethylene neutron 

shield and 20cm-thickness lead photon shield for 1011 

D-D neutron source.  

In addition, minimum shield thickness was also 

evaluated for the various strength of D-D neutron 

sources.  
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