Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 17-18, 2018

Scoping Analysis of Spent Fuel Storage Cask for Monitoring Application

Hyong Chol Kim, Young Jin Lee, and Sam Hee Han

Introduction

- SNF Dry Storage Casks
 - Over 1500 casks in US
 - Initial license of 20 years
 - Delay of permanent disposal facilities
 - Extension of storage terms up to 40 years renewal
 - Issues of aging management and monitoring
 - Confinement monitoring (10CFR 72.122(h)(4))
- Focus of the Present Study
 - Monitoring without sensor line penetration through the canister wall
 - Canister surface temperature (CST) measurements for detecting helium gas leak from canister
 - Analyzing the dependence of CST on the canister internal pressure

• Modeling Reference

% Tae-Man Kim, et. al, Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions, JNFCWT, Vol.15, No.4, pp.391-402, 2017.

- Analysis Tool
 - COBRA-SFS
 - RADGEN
 - RELAP5
 - Coupled using the air gap temperature distribution as b.c.

- COBRA-SFS Input
 - 22 assemblies (21 fuels and one downcommer)
 - 308 slabs with 36 axial nodes
 - Uniform pressure drop for zero net inlet mass flow for assemblies

Fig. 2. COBRA-SFS input nodalization

- RELAP5 Input
 - 2 pipe components
 - 2 branch components
 - 3 heat structures

Fig. 4. RELAP5 Nodalization

- Correlation Development
 - Neural network model using the generalized delta rule for feedforward net with backpropagation of error
 - Input variables : canister surface temperature and ambient air temperature
 - output variables : canister internal pressure

● COBRA-SFS 해석 결과 예시

<캐니스터 표면 온도 (ºF)>

2018 KNS Spring Meeting

- COBRA-SFS Calculation Results
 - 800 W assembly power and 20 °C ambient air

● COBRA-SFS DB 구축

• 예측 알고리즘 구축을 위한 예비 분석 DB (108-Cases)

Press (bar)	Power (W)	Tair (°C)	T1 (°C) @14.60 in.	T2 (°C) @43.75 in.	T3 (°C) @77.10 in.	T4 (°C) @106.25 in.	T5 (°C) @135.4 in.	PCT (°C)		_			
Case 001		10.0	42.7	48.7	54.8	59.9	63.7	254.6	197.9				
Case_002		15.0	47.3	53.4	59.6	64.7	68.7	260.9	203.3	477.4	1		
Case 003		20.0	52.0	58.1	64.4	69.6	73.6	267.3	209.4	1/7.4	I	-	
ㅈ저벼스 버의		増격 ctop コフ		в	벼겨개스		273.7	214.4	182.7	РСТ			
고경한구 금지		ТІ			L			279.8	220.1	102.5	(°C)		-
헬륨 압력 1 ·		bar	1 bar			6		286.2	225.7	195.5	254.6	197.9	
		Dar						325.2	249.4	198.5	260.9	203.3	177.4
Assambly 다 츠려 (00) (000 \	200 14/			2		338.2	254.3	204.0	267.3	209.4	192.7
Assembly 경 물릭 600 ~		000 W	200 VV			5		344.7	260.8	222.4	273.7	214.4	192.7
				- °C	C		6.2	351.2	266.4	228.5	279.8	220.1	100.5
내기 폰도 10 ~		35 C				0		357.7	272.1	200.0	325.2	225.7	109.2
소 데이터 케이저 소							8.5	395.1	277.1	238.5	331.6	249.4	204.0
등 네이터 케이스 구					108 Case		401.7	299.8	243.9	338.2	254.3	204.0	
Case_015	1000.0	20.0	66.5	75.7	85.2	92.8	98.3	408.5	305.1	248.5	344.7	260.8	222.4
Case_016		25.0	71.0	80.3	89.8	97.5	103.2	415.0	310.4	207.0	351.2	266.4	220.5
Case 018		35.0	80.1	89.5	99.3	102.5	108.2	421.0	316.7	270.0	357.7	272.1	238.3
			30.0	70.0	00.0	7.0 91.0 90.7		103.3	322.2	2/0.0	395.1	277.1	243.9
Case_036		35.0	80.5	88.1	96.3	103.6	111.0	327.9	202.0	401.7	299.8	248.3	
Case_055			30		7 01	0 05	7 10	.0 10	0.0	207.0	415.0	305.1	267.0
Case 017				30.0	75.5	.9 : 95 : 84.9	: 94.6	102.3	1	.08.2	421.8	310.4	270.6
Case_018				35.0	80.1	89.5	99.3	107.1	1	13.1	428.4	316.7	276.8
Case_035					30.0	30.0 76.0 83.6 91.6				/ 10	5.9	322.2	-282.0
Case_036			ase uss I	35.0 80.5 : 88.1 : 96.3 :					103.	6 11	1.0	327.9	287.6
	ase_054			35.0	80.7 87.9 95.7 102.7 110.0 292.9						292.9		

<압력 변화에 따른 축방향 캐니스터 표면온도 변화>

- Prediction results of canister helium pressure
 - Standard deviation of pressure prediction ratio : 4.6%

Fig. 6. Prediction results of helium pressure

- Prediction results of peak cladding temperature
 - Standard deviation of PCT prediction ratio : 1.1%

Fig. 7. Prediction results of peak cladding temperature

Conclusions

- A COBRA-SFS/RELAP5 code system has been established for the thermo-dynamic analysis of SNF dry storage casks.
- Analyses were carried out to investigate the canister surface temperature distribution dependence on the canister internal pressure.
- A neural network model was employed to predict the canister internal pressure based on the canister surface temperatures.
- Canister integrity can be monitored by helium leak detection based on the canister surface temperature measurement eliminating the need for pressure probe into the canister.
- Similar prediction model may be applicable for predicting peak cladding temperature using the surface temperature measurements.
- Detailed computational fluid dynamics analyses and supporting experiments are needed for more extensive verification.

감사합니다

000

