A Detector Capacitance Compensation Technique for SiPMs

Duckhyun Kim*, Inyoung Kwon, Chang Hwoi Kim

Nuclear ICT Research Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 beon-gil, Daejeon, Korea

INTRODUCTION

□ SiPM Applications : Need signal multiplexing for large detecting area

- Radiation Monitoring system of Nuclear industry
- Medical instruments such as PET and SPECT
- High energy physics

KAERI

□ High capacitance of SiPMs: Amplitude degradation when many SiPMs are connected in parallel to a single channel of readout

Amplitude degradation [1-3]

Measurement Result

Experimental Setup

- SiPM : Sensl MicroFJ-30035-TSV
- Scintillator : LYSO crystal 3mm x 3mm x 20mm
- Radiation source : $Cs-137(5\mu Ci)$

Circuit Schematic

Completed Sensor and Circuit in an aluminum box

Traditionally, in order to mitigate the effect on high capacitance, signal distribution methods were proposed : A lot of CSA required [4]

Traditional Multiplexing Technique Single Micro-Pixel Pulses for Simulation (16 : 4 Multiplexed) 3.5 OPA2690ID OPA2690ID 130Ω SiPM 3 2 SiPM . 150Ω § Rg 2,5 150Ω < Ra Rr Rr Rr i (mV) 4 SiPM Rr Rr Rr 0Ω Amplitude 1.5 8 SiPM Rr | Rr | Rr | 0Ω 0Ω Rc Rr Rr Rr Rc OPA2690ID 130Ω 130Ω OPA2690ID 16 SiPM Rgr; -0.5 35 150Ω 150Ω Rq≶ Time (ns)

Proposed Technique : Bootstrap Circuit

Result 16 : 1 Multiplexed SiPMs With and Without the Bootstrap • Different multiplexing ratio of 1, 4, 8, and 16 : Detector capacitance increase

Non compensated gamma spectrum

Compensated gamma spectrum : 1 SiPM

Bootstrap Circuit

• This technique exploits the Miller effect to reduce capacitance at input of preamplifier [5]

□ Simulation : Multiplexed SiPMs with bootstrap technique

Simulation schematic : Bootstrap circuit

Compensated gamma spectrum : 4 SiPM **Compensated gamma spectrum :** 16 SiPM

Conclusion & Future Work

Conclusion

- Successfully enhanced signal amplitudes even though SiPM channels increase
- The proposed configuration can greatly reduce the number of preamplifiers while maintaining the pulse shapes without losing information

□ Future work

- Optimization for the circuit configuration
- Measurement timing resolution for time dominant applications

Overall theoretical analysis

Acknowledgement

This work was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016M2A8A1952801).

References

[1] R. Vinke, "Electrical delay line multiplexing for pulsed mode radiation detectors," *Phys. Med. Biol.*, vol. 60, no. 7, pp. 2785-2802, Mar. 2015.

[2] S. Kwon, "Signal encoding method for a time-of-flight PET detector using a silicon photomultiplier array," Nucl. Instrum. Meth. A, vol. 761, pp. 39-45, Oct. 2014.

[3] E. Downie, "Investigation of analog charge multiplexing schemes for SiPM based PET block detectors," Phys. Med. Biol., vol. 58, no. 11, pp. 3943-3964, Mar. 2013.

[4] L. Goertzen, "Design and performance of a Resistor Multiplexing Readout circuit for a SiPM Detector", IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp.1541-1549, June. 2013.

[5] I. Kwon, "Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect," Nucl. Instrum. Meth. A, vol. 784, no. 1, pp. 220-225, June 2015.